期刊文献+

Towards a better prediction of subcellular location of long non-coding RNA 被引量:1

原文传递
导出
摘要 The spatial distribution pattern of long non-coding RNA(lncRNA)in cell is tightly related to their function.With the increment of publicly available subcellular location data,a number of computational methods have been developed for the recognition of the subcellular localization of lncRNA.Unfortunately,these computational methods suffer from the low discriminative power of redundant features or overfitting of oversampling.To address those issues and enhance the prediction performance,we present a support vector machine-based approach by incorporating mutual information algorithm and incremental feature selection strategy.As a result,the new predictor could achieve the overall accuracy of 91.60%.The highly automated web-tool is available at lin-group.cn/server/iLoc-LncRNA(2.0)/website.It will help to get the knowledge of lncRNA subcellular localization.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第5期205-211,共7页 中国计算机科学前沿(英文版)
基金 This work was supported by the National Nature Scientific Foundation of China(Grant No.61772119) Sichuan Provincial Science Fund for Distinguished Young Scholars(2020JDJQ0012).
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部