期刊文献+

Exploiting natural language services:a polarity based black-box attack

原文传递
导出
摘要 1 Introduction Production input of Natural Language Processing(NLP)services can be be manipulated with malicious intent in order to lower the performance to a level that compromises the integrity of the service without any information on the underlying model.The adversaries that perform word-level input perturbations in black-box settings first detect the“important”words,then perform noisy operations,such as replacement or deletion.Gao et al.[1]assigned word importance scores(temporal scores)calculated via querying the partial input for each individual sample.By this procedure,they queried the victim model on both the word score calculation and the perturbation stage,which potentially caused a big requestresponse overhead.In comparison,we only calculate the word importance scores(polarity score)once using an external dataset,and without querying the victim model.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第5期213-215,共3页 中国计算机科学前沿(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部