期刊文献+

Metric learning for domain adversarial network

原文传递
导出
摘要 1 Introduction The existing domain adaptation methods[1,2]always aim to perform domain alignment between the source and target domain to alleviate the problem of domain shift[3].The target domain samples are likely to scatter on the classification boundary due to a lack of label information.Therefore,how to identify these overlapping classes in the target domain,called easily-confused classes,becomes the key to the improvement of classification performance.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第5期229-231,共3页 中国计算机科学前沿(英文版)
基金 This work was supported in part by the National Natural Science Foundation of China(Grant Nos.62071242,61571233,61901229,and 61872198) the Graduate Research and Innovation Projects of Jiangsu Province(KYCX20_0738).
关键词 FUSED ALIGNMENT SCATTER
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部