期刊文献+

基于模式引导和焦点损失的对话状态追踪算法

Schema-guided dialog state tracking with focal loss
下载PDF
导出
摘要 为解决以往对话状态追踪算法只能处理少数对话现象,且没有考虑到这些对话现象在数据集中分布不平衡的问题,提出一种基于模式引导和焦点损失的对话状态追踪算法。利用模式将槽位划分为可分类和不可分类,将用户表达归纳为4种现象(词汇多样性、未知值、值共享和推荐接受),以利于合理地填充对应槽位;使用焦点损失函数保证难样本得到充分训练。在大规模任务型对话数据集MultiWOZ2.2上进行大量消融实验,验证了模型的可行性和算法的有效性。 To solve the problem that previous dialog state tracking works can only handle a few dialog phenomena and do not consider the imbalance of these phenomena in the dataset,a schema-guided dialogue state tracking with focal loss was proposed.Schema was used to divide all slots into categorical and non-categorical,and user expressions were categorized into four phenomena(diverse value,unseen value,value sharing and recommendation acceptance),which facilitated filling the corresponding slots using a reasonable method.The focal loss was used to ensure that hard samples were adequately trained.A large number of ablation experiments were carried out on the large-scale task-oriented dialog dataset MultiWOZ 2.2 to verify the feasibility of the model and the effectiveness of the algorithm.
作者 朱若尘 杨长春 张登辉 ZHU Ruo-chen;YANG Chang-chun;ZHANG Deng-hui(School of Computer Science and Artificial Intelligence,Changzhou University,Changzhou 213159,China;College of Information Science and Technology,Zhejiang Shuren University,Hangzhou 310015,China)
出处 《计算机工程与设计》 北大核心 2022年第11期3143-3148,共6页 Computer Engineering and Design
基金 浙江省自然科学基金项目(LY16F020021)。
关键词 对话状态追踪 多领域 模式引导的对话 数据不平衡 焦点损失 dialog state tracking multi-domain schema-guided dialog data imbalance focal loss
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部