期刊文献+

基于D-vine分位点回归的风电功率短期概率预测 被引量:4

Short-term probability prediction of offshore wind power based on D-vine quantile regression
下载PDF
导出
摘要 风电存在随机性和波动性,大规模风电并网会对系统运行调度造成影响,需进行精确的风功率短期预测。在考虑风电出力时序相关性的基础上,提出一种D-vine分位点回归模型预测短期风电功率发生概率。采用D-vine结构及copula函数进行风电时序相关性建模以获得风电出力联合概率模型。采用条件分位点回归算法确定时序预测点位数并推求后序风电出力概率。针对某海上风电场进行数据测试,利用该预测方法进行验证,表明该方法对于风电出力进行概率预测是有效的。 Wind power has randomness and volatility,and large-scale wind power grid integration affects system operation and dispatch,so the accurate short-term wind power forecasting is required.Based on the time series correlation of wind power output,a short-term wind power probability prediction method based on the D-vine quantile regression model is proposed.The D-vine structure and copula function are used to model the time series correlation of wind power,and the joint probability model of wind power output is obtained.The conditional quantile regression algorithm is used to determine the number of points for time series forecasting,and to calculate the probability of subsequent wind power output.Based on the data of an offshore wind farm,the proposed prediction method was tested,and the result showed the effectiveness of predicting the probability of wind power output.
作者 李强 张伟 汪惟源 汪成根 郝思鹏 LI Qiang;ZHANG Wei;WANG Weiyuan;WANG Chenggen;HAO Sipeng(State Grid Jiangsu Electric Power Company Electric Power Research Institute,Nanjing 211103,China;Nanjing Instituteof Technology,Nanjing 211167,China)
出处 《供用电》 2022年第11期93-99,共7页 Distribution & Utilization
基金 江苏省高等学校自然科学重大项目(21KJA470005)。
关键词 海上风电 概率预测 分位点回归 COPULA VINE offshore wind power probability prediction quantile regression copula vine
  • 相关文献

参考文献12

二级参考文献129

  • 1吴义纯,丁明,张立军.含风电场的电力系统潮流计算[J].中国电机工程学报,2005,25(4):36-39. 被引量:129
  • 2刘君华,方鸽飞,吕岩岩.基于灵敏度法确定无功补偿地点[J].电力系统及其自动化学报,2006,18(4):58-61. 被引量:40
  • 3BREMNES J B, VILLANGER F. Probabilistic forecasts for daily wind power production[C]// Proceedings of the Global Wind Power Conference, April 2-5, 2002, Paris, France.
  • 4LUIG A, BOFINGER S, BEYER H G. Analysis of confidence intervals for the prediction regional wind power output[C]//Proceedings of the European Wind Energy Conference, July 2-7, 2001, Copenhagen, Denmark.
  • 5BREMNES J B. Probabilistic wind power forecasts using local quantile regression[J]. Wind Energy, 2004, 7(1): 47-54.
  • 6MOHANDES M A, HALAWANI T O, REHMAN S, et al. Support vector machines for wind speed prediction [J]. Renewable Energy, 2004, 29(6): 939-947.
  • 7KOENKER R, PARK B J. An interior point algorithm for nonlinear quantile regression [J].Journal of Econometrics, 1996, 71(1): 265-283.
  • 8WIDROWB,STERNSSD.AdaptiveSignalProcessing,[]..1985
  • 9CHATFIELDC.Whatisthe’’best’’methodofforecasting?[].JournalofAppliedStatistics.1988
  • 10TANGZ,DEALMEIDAC,FISHWICKP.Timeseriesfore castingusingneuralnetworksvs.BoxJenkinsmethodology[].Simulation.1991

共引文献221

同被引文献69

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部