期刊文献+

几个关于1-2有序分拆的恒等式及组合证明

Several identities and combinatorial proofs for 1-2 compositions
下载PDF
导出
摘要 研究了正整数的两类1-2有序分拆,其中一类是正整数的首、末两端分部量都是1的1-2有序分拆,另一类是正整数的首、末两端分部量至少有一个是2的1-2有序分拆.首先得到了这些有序分拆数与Fibonacci数之间的一些关系式.进而,利用熟知的与Fibonacci数相关的有序分拆恒等式得到了这两类正整数的有序分拆数与分部量是奇数、分部量大于1、分部量是1或者2的有序分拆数之间的一些新的有序分拆恒等式,并给出了这些恒等式的组合双射证明. Two classes of 1-2 compositions of positive integer are studied.One of them is the 1-2 compositions with parts of size 1 at the left and the right of positive integers,and the other is the 1-2 compositions with parts of size 2 at the left or the right of positive integers.Firstly,some relations between the number of these compositions and the Fibonacci numbers are obtained.And then using the well-known composition identities related to the Fibonacci numbers,several new composition identities between the number of these two classes of the compositions and the number of the compositions with parts of odd,the number of the compositions with parts of size greater than 1 and the number of the compositions with parts of size 1 or 2 are got.In addition,combinatorial bijective proofs of these identities are given.
作者 郭育红 GUO Yuhong(School of Mathematics and Statistics,Hexi University,Zhangye 734000,China)
出处 《大连理工大学学报》 CAS CSCD 北大核心 2022年第6期655-660,共6页 Journal of Dalian University of Technology
基金 甘肃省自然科学基金资助项目(21JR7RA552) 国家自然科学基金资助项目(11461020).
关键词 1-2有序分拆 分部量 FIBONACCI数 恒等式 组合证明 1-2 compositions the part Fibonacci number identity com binatorial proof
  • 相关文献

参考文献5

二级参考文献31

  • 1MacMahon P A. Combinatory Analysis [M]. Cambridge: Cambridge University Press, 1915.
  • 2Andrews G E. The Theory of Partitions [M]. Cambridge: Cambridge University Press, 1984.
  • 3Munagi A O. Primary classes of compositions of numbers [J]. Ann. Math. Inform., 2013,41:193-204.
  • 4Munagi A O. Zig-Zag graphs and partitions identities of A K Agarwal [J]. Ann. Comb., 2015,19:557-566.
  • 5Ilvia Heubach, Toufik Mansour. Combinatorics of Compositions and Words [M]. Boca Raton: CRC Press 2010.
  • 6Andrew V, Sills. Compositions, partitions and fibonacci numbers [J]. Fibonacci Quart., 2011,49(4):348-354.
  • 7Hoggatt V E, Bicknell M. Palindromic composition [J]. Fibonacci Quart., 1975,13:350-356.
  • 8Agarwal A. K., Andrews G. E., Rogers-Ramanujan identities for partition with 'N copies of N', J. Combin. Theory A, 1987, 45(1): 40-49.
  • 9AgarwM A. K., n-color compositions, Indian J. Pure Appl. Math., 2000, 31(11): 1421-1427.
  • 10Agarwal A. K., An analogue of Euler's identity and new Combinatorial properties of n-color com-positions, J. Comput. Appl. Math., 2003, 160(1/2): 9-15.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部