期刊文献+

基于深度学习的管件识别与位姿估计研究 被引量:3

Research on pipe fitting identification and pose estimation based on deep learning
下载PDF
导出
摘要 管件的6D位姿估计是机器人抓取抛光的前提,传统的估计策略工作量大,基于深度学习提出改进的深度对象姿态估计(deep object pose estimation,DOPE)框架对管件实时检测。首先,制作合成数据训练网络。其次,对网络提出改进:针对管件的旋转对称性,自定义损失函数,提高管件检测精度;且采用Resnet18提取管件特征,减轻网络规模。最后,探究热图阶段数对推理时间的影响。改进后的DOPE网络估计管件位姿时,其精度-阈值曲线下面积(area under the curve,AUC)提高了17%,参数量和浮点计算量分别减少9%和20%,检测单张图片仅需102 ms。估计管件位姿试验证明了改进DOPE的有效性,且满足工业要求。 The 6D pose estimation of pipe fitting is the premise of robot grasping and polishing.Heavy workload is required for traditional estimation strategies.Based on deep learning,an improved deep object pose estimation(DOPE)framework was proposed for real-time detection pipe fitting.First of all,a synthetic dataset was created to train the network.In the next place,some suggestions were put forward:in order to solve the symmetry of pipe fitting and improve the detection accuracy of pipe fitting,a custom loss function was proposed.The network size has been reduced by using resnet18 to extract pipe fitting features.In the end,the effect of the number of heatmap stages on reasoning time was explored.The AUC is 17%higher,the number of parameters and floating point operations are 9%and 20%lower,and it only takes 102 ms to detect a picture when using the improved DOPE to estimate the pipe fitting pose.The effectiveness of modified DOPE was proved by the test of estimated pipe fitting pose,and it also meet the industrial requirements.
作者 李雨龙 陈松 李鑫 李昌龙 赵耀耀 李顺 LI Yulong;CHEN Song;LI Xin;LI Changlong;ZHAO Yaoyao;LI Shun(School of Mechanical Engineering and Automation,Liaoning University of Science and Technology,Anshan 114051,CHN;School of Electronic and Information Engineering,Liaoning University of Science and Technology,Anshan 114051,CHN)
出处 《制造技术与机床》 北大核心 2022年第12期70-75,共6页 Manufacturing Technology & Machine Tool
基金 国家自然科学基金(51775258) 辽宁省教育厅项目(2020FWDF07) 辽宁省教育厅项目(2020FWDF05) 辽宁科技大学基金(2018FW05)。
关键词 管件 位姿估计 DOPE 深度学习 pipe fitting pose estimation DOPE deep learning
  • 相关文献

参考文献8

二级参考文献27

共引文献60

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部