期刊文献+

联合立场的过程跟踪式多任务谣言验证模型 被引量:1

Process tracking multi-task rumor verification model combined with stance
下载PDF
导出
摘要 当前,社交媒体平台成为人们发布和获取信息的主要途径,但简便的信息发布也导致了谣言更容易迅速传播,因此验证信息是否为谣言并阻止谣言传播,已经成为一个亟待解决的问题。以往的研究表明,人们对信息的立场可以协助判断信息是否为谣言。在此基础上,针对谣言泛滥的问题,提出了一个联合立场的过程跟踪式多任务谣言验证模型(JSP⁃MRVM)。首先,分别使用拓扑图、特征图和公共图卷积网络(GCN)对信息的三种传播过程进行表征;然后,利用注意机制获取信息的立场特征,并融合立场特征与推文特征;最后,设计多任务目标函数使立场分类任务更好地协助验证谣言。实验结果表明,所提模型在RumorEval数据集上的准确度和Macro⁃F1较基线模型RV⁃ML分别提升了10.7个百分点和11.2个百分点,可以更有效地检验谣言,减少谣言的泛滥。 At present,social media platforms have become the main ways for people to publish and obtain information,but the convenience of information publish may lead to the rapid spread of rumors,so verifying whether information is a rumor and stoping the spread of rumors has become an urgent problem to be solved.Previous studies have shown that people􀆳s stance on information can help determining whether the information is a rumor or not.Aiming at the problem of rumor spread,a Joint Stance Process Multi⁃Task Rumor Verification Model(JSP⁃MRVM)was proposed on the basis of the above result.Firstly,three propagation processes of information were represented by using topology map,feature map and common Graph Convolutional Network(GCN)respectively.Then,the attention mechanism was used to obtain the stance features of the information and fuse the stance features with the tweet features.Finally,a multi⁃task objective function was designed to make the stance classification task better assist in verifying rumors.Experimental results prove that the accuracy and Macro⁃F1 of the proposed model on RumorEval dataset are improved by 10.7 percentage points and 11.2 percentage points respectively compared to those of the baseline model RV⁃ML(Rumor Verification scheme based on Multitask Learning model),verifying that the proposed model is effective and can reduce the spread of rumors.
作者 张斌 王莉 杨延杰 ZHANG Bin;WANG Li;YANG Yanjie(College of Data Science,Taiyuan University of Technology,Jinzhong Shanxi 030600,China)
出处 《计算机应用》 CSCD 北大核心 2022年第11期3371-3378,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(61872260)。
关键词 谣言验证 立场 多任务 图卷积网络 传播过程 目标函数 rumor verification stance multi⁃task Graph Convolutional Network(GCN) propagation process objective function
  • 相关文献

参考文献2

二级参考文献9

  • 1汉斯-约阿希姆·诺伊鲍尔.《谣言女神》,顾牧译,中信出版社,2004年,第151页.
  • 2这个谣言来自于一位刘姓的网友,在他的人人日志上,详细叙述了他炮制这条谣言的原因,以及他个人观察到的这条谣言的传播过程:http://blog.renrencom/blog/240149916/819939392.
  • 3卡斯-R·桑斯坦:《谣言》,中信出版社20lO年版.
  • 4让一诺埃尔·卡普费雷:《谣言:世界最古老的媒介》第143-146页、第197页、第1页、第96页、第265-268页,上海人民出版社2008年版.
  • 5斯·R·桑斯坦:《恐惧的规则:超越预防的原则》第57页,北京大学出版社2011年版.
  • 6李若建:《虚实之间:20世纪50年代中国大陆谣言研究》第202页,社会科学文献出版社.
  • 7Asch S.,<Effects of Group Pressure upon the Modification and Distortion of Judgments>, Readings in Social Psychology, E. Maccoby, T. Newcomb, E. Hartley (eds.), New York, Holt Rine- hart and Winston, 1958, p.174-183.
  • 8Chun Liao,Chong Feng,Sen Yang,He-Yan Huang.A Hybrid Method of Domain Lexicon Construction for Opinion Targets Extraction Using Syntax and Semantics[J].Journal of Computer Science & Technology,2016,31(3):595-603. 被引量:5
  • 9王汝娇,姬东鸿.基于卷积神经网络与多特征融合的Twitter情感分类方法[J].计算机工程,2018,44(2):210-219. 被引量:28

共引文献6

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部