期刊文献+

cardiGAN:A generative adversarial network model for design and discovery of multi principal element alloys 被引量:3

原文传递
导出
摘要 Multi-principal element alloys(MPEAs),inclusive of high entropy alloys(HEAs),continue to attract significant research attention owing to their potentially desirable properties.Although MPEAs remain under extensive research,traditional(i.e.empirical)alloy production and testing are both costly and timeconsuming,partly due to the inefficiency of the early discovery process which involves experiments on a large number of alloy compositions.It is intuitive to apply machine learning in the discovery of this novel class of materials,of which only a small number of potential alloys have been probed to date.In this work,a proof-of-concept is proposed,combining generative adversarial networks(GANs)with discriminative neural networks(NNs),to accelerate the exploration of novel MPEAs.By applying the GAN model herein,it was possible to directly generate novel compositions for MPEAs,and to predict their phases.To verify the predictability of the model,alloys designed by the model are presented and a candidate produced-as validation.This suggests that the model herein offers an approach that can significantly enhance the capacity and efficiency of development of novel MPEAs.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第30期81-96,共16页 材料科学技术(英文版)
  • 相关文献

同被引文献21

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部