期刊文献+

高分辨率桥梁裂缝图像实时检测 被引量:1

Real Time Detection of High Resolution Bridge Crack Image
下载PDF
导出
摘要 针对现有桥梁裂缝检测算法实时性弱、可靠性差等问题,提出一种嵌入式平台上的实时检测算法。使用移动平均法粗分割,依据几何特征和区域生长法再分割,定位候选裂缝片段;基于裂缝先验条件,建立双判别准则的裂缝聚合模型,递归合并裂缝片段并抑制干扰。实验表明,算法能有效提取细小裂缝,抑制不均匀光照和污渍等复杂背景干扰,识别性能与数种现有算法相比提高115%以上;在嵌入式开发板上处理1500万像素的图像仅耗时1.73 s。 The problem of current algorithms is lack of timeliness and reliability in bridge crack detection.In this paper,a real-time algorithm on embedded platform is proposed.Firstly,moving average method is used to segment the image coarsely.Then,candidate crack fragments are selected by region growing method using the geometric features of their contours.Finally,a crack merging model with two criteria is built to merge the crack fragments recursively and suppress interference,based on the prior condition of bridge cracks.Experimental results show that the proposed method performs better than several existing methods by 115%at least,especially on extracting hairline cracks and complex cases with uneven illumination and dirty mark.Dealing with an image with 15 megapixel on embedded platform,it costs only 1.73 s.
作者 刘信宏 苏成悦 陈静 徐胜 罗文骏 李艺洪 刘拔 Liu Xin-hong;Su Cheng-yue;Chen Jing;Xu Sheng;Luo Wen-jun;Li Yi-hong;Liu Ba(School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处 《广东工业大学学报》 CAS 2022年第6期73-79,共7页 Journal of Guangdong University of Technology
基金 广东省科技计划项目(2017A020208063) 广州市科技计划项目(201804010384)。
关键词 图像处理 桥梁裂缝 高分辨率 实时检测 嵌入式平台 image processing bridge crack high resolution real-time detection embedded platform
  • 相关文献

参考文献8

二级参考文献82

  • 1王夏黎,周明全,耿国华.一种基于HSV颜色空间的车辆牌照提取方法[J].计算机工程,2004,30(17):133-135. 被引量:22
  • 2李颖超,刘越,王涌天.基于多尺度Hessian矩阵和Gabor滤波的造影图像冠脉中心线提取[J].中国医学影像技术,2007,23(1):133-136. 被引量:13
  • 3Jafar I F, AINa'mneh R A, Darabkh K A. Efficient improve- ments on the BDND filtering algorithm for the removal of high- density impulse noise [J]. IEEE Transactions on Image Proces- sing, 2013,22(3) : 1223-1232.
  • 4Rajwade A, Rangarajan A, Banerjee A. Image denoising using the higher order singular value decomposition [J]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2013,35 (4) :849-862.
  • 5Yu Wei, Franchetti F, Hoe J C, et al. Fast bilateral filtering by adapting block size [C] // Proceedings of IEEE International Conference on Image Processing. Hong Kong, China, 2010: 3281-3284.
  • 6Kang I3, Choi O, Kim J D, et al. Noise reduction in magnetic re- sonance images using adaptive non-local means filtering [J]. Electronics Letters,2013,49(5) :324-326.
  • 7Overton K I,Weymouth T E. A noise reducing reprocessing al- gorithm [C] // Proceedings of IEEE Computer Science Conference on Pattern Recognition and Image Processing. Chicago, USA, 1979 : 498-507.
  • 8Zheng You-Yi, Fu Hong-bo, AuOK C, et ai. Bilateral normal fil- tering for mesh denoising [J]. IEEE Transactions on Visualiza- tion and Computer Graphics,2011,17(10) : 1521-1530.
  • 9Zhang Ke, Lu Jian-Bo,Lafruit G. Cross-based local stereo matc- hing using orthogonal integral images [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19 (7): 1073-1079.
  • 10Guerreiro R F C, Aguiar P M Q. Learning simple texture dis- crimination filters [C]//Proceedings of IEEE International Con- ference on Image Processing. Hong Kong, China, 2010 : 261-264.

共引文献181

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部