期刊文献+

基于FSST-ResNet的滚动轴承变工况数据故障诊断研究 被引量:3

Research on fault diagnosis of rolling bearing variable condition data based on FSST-ResNet
下载PDF
导出
摘要 针对滚动轴承运行工况复杂多变,难以诊断的问题,提出一种基于短时傅里叶的同步压缩变换(FSST)与残差神经网络(ResNet)相结合的故障诊断方法。该方法对轴承振动信号做短时傅里叶变换后,将时频系数压缩重排,生成基于FSST时频图在3种变工况下的训练集和测试集。考虑到深度模型的网络退化问题,采用ResNet模型对数据集进行时频特征提取和故障诊断,进一步提升轴承故障诊断的精度。通过3种变工况实验证明了该方法的有效性和可行性,平均诊断准确率高达98.9%,与其他方法相比,诊断精度有较大提高。 Aiming at the problem that rolling bearing operating conditions are complex and changeable and difficult to diagnose,a fault diagnosis method based on the combination of short-time Fourier Synchrosqueezing Transform (FSST) and Residual Neural Network (ResNet) was proposed.This method performs short-time Fourier transform on the bearing vibration signal,compresses and rearranges the time-frequency coefficients,and generates a training set and a test set based on the FSST time-frequency diagram under three variable operating conditions.Taking into account the network degradation problem of the deep model,the ResNet model was used to extract time-frequency features and fault diagnosis of the data set to further improve the accuracy of bearing fault diagnosis.The effectiveness and feasibility of this method were proved through three variable-condition experiments.The average diagnostic accuracy rate is as high as 98.9 %.Compared with other methods,the diagnostic accuracy is greatly improved.
作者 张萍 张文海 卢盛欣 孟雷 李练兵 ZHANG Ping;ZHANG Wenhai;LU Shengxin;MENG Lei;LI Lianbing(Hebei Provincial Key Laboratory of Electromagnetic Field and Electrical Appliance Reliability,Tianjin 300130,China;School of Artificial Intelligence and Data Science,Hebei University of Technology,Tianjin 300130,China;Hebei Jiantou Offshore Wind Power Co.,Ltd.,Tangshan 063000,China)
出处 《现代制造工程》 CSCD 北大核心 2022年第11期130-136,共7页 Modern Manufacturing Engineering
关键词 滚动轴承 故障诊断 变工况 同步压缩变换 残差神经网络 rolling bearing fault diagnosis variable working conditions synchronous compression transformation Residual Neural Network(ResNet)
  • 相关文献

参考文献8

二级参考文献83

  • 1李方,李友荣,王志刚.基于Morlet小波与最大似然估计方法的降噪技术[J].振动.测试与诊断,2005,25(1):40-42. 被引量:6
  • 2郝红卫,蒋蓉蓉.基于最近邻规则的神经网络训练样本选择方法[J].自动化学报,2007,33(12):1247-1251. 被引量:37
  • 3Donoho D L,Johnstone I M.Ideal spatial adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455.
  • 4Donoho D L.De-noising by soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 5Donoho D L,Johnstone I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the American Statistical Association,1995,90(432):1200-1224.
  • 6Donoho D L,Johnstone I M.Minimax estimation via wavelet shrinkage[J].The Annals of Statistics,1998,26(3):879-921.
  • 7Nezamoddin N K,Paul F,Edward J.BayesShrink ridgelets for image denoising[C]// Proceedings of In- ternational Conference on Image Analysis and Recogni- tion(ICIAR).Veriag Berlin Heidelberg,Germany:Springer,2004:163-170.
  • 8Xia Xianggen.System identification using chirp signals and time-variant filters in the joint time-frequency do- main[J].IEEE Transactions on Signal Processing,1997,45(8):2072-2084.
  • 9ChristiansenO.Time-frequency analysis and its appli cations in denoising[D].Norway:University of Ber- gen,2002.
  • 10Nezamoddin N K9Paul F.A gabor based technique for image denoising[C]// Canadian Conference on Electri- cal and Computer Engineering.Waterloo,Canada:IEEE,2005:980-983.

共引文献313

同被引文献31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部