期刊文献+

节流制冷对低温贮箱主流液体控温影响分析

Analysis of JT refrigeration influence on temperature control of mainstream liquid in cryogenic storage tank
原文传递
导出
摘要 为研究低温流体节流特性及冷量引入对贮箱主流体控温影响,首先对低温流体节流干度和体积含气率进行了分析,结果表明质量占比较小的气相占据了大部分空间体积,对流动速率及换热产生较大影响;建立了节流制冷性能测试平台,采用液氮工质开展了节流前压力为0.3~0.37 MPa工况下的减压降温试验,节流前后降温达到了11.3~14.2 K;在集成节流阀孔的热力学排气系统(TVS)系统中,通过节流制冷使贮箱流体产生了平均6.5 K的温降,将贮箱压力控制在150~160 kPa范围;冷量的引入使主流区液体温度持续波浪式降低,气液界面热分层处的降温效果更加明显。 In order to study the Joule Thomson(JT)characteristics of cryogenic liquid and the influence of the introduction of cooling capacity on the temperature control of the mainstream in tank,the mechanism of the throttling dryness and volume void fraction on the heat transfer of the fluid was analyzed, which showed that the gas with small mass occupied most of the space volume;The test platform of throttling performance was established,and the experiment of refrigeration was carried out with liquid nitrogen as the working medium when the pressure before throttle ranged from 0. 3-0. 37 MPa,the temperature drop reached 11. 3-14. 2 K. In the thermodynamic vent system(TVS),the average temperature drop of the fluid involved in throttling was 6. 5 K,and the tank pressure was controlled within 150-160 kPa. The introduction of cooling capacity made the temperature of mainstream decrease in a wavy trend,and the cooling effect at the thermal stratification of the gas-liquid interface was more obvious.
作者 周振君 刘欣 刘晨 孟楠 陈世奎 ZHOU Zhenjun;LIU Xin;LIU Chen;MENG Nan;CHEN Shikui(China Academy of Launch Vehicle Technology,China Aerospace Science and Technology Corporation,Beijing 100076,China;Capital Aerospace Machinery Corporation Limited,Beijing 100076)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2022年第9期2001-2008,共8页 Journal of Aerospace Power
关键词 低温液体 节流效应 体积含气率 降压 热分层 cryogenic liquid JT effect volume void fraction depressurization thermal stratification
  • 相关文献

参考文献2

二级参考文献18

  • 1张超,鲁雪生,田丽亭.火箭低温液体推进剂增压系统数学模型[J].低温与超导,2005,33(2):35-38. 被引量:17
  • 2张勇,李正宇,李强,胡忠军,李青.低温液体储箱加压排液过程计算模型比较[J].低温工程,2007(2):24-27. 被引量:10
  • 3Alok M, Todd S. Numerical modeling of pressurization of a propellant tank[J]. Journal of Propulsion and Power, 2001,17(2) :385-390.
  • 4Zilliac G, Karaloeyoglu M A. Modeling of propellant tank pressurization[R]. AIAA 2005-3549,2005.
  • 5Roudebusb W H. An analysis of the problem of tank pres- surization during outflow[R]. NASA TND-2585,1965.
  • 6Stochl R J, Maloy J E, Masters P A, et al. Gaseous helium requirements for the discharge of liquid hydrogen from a 3. 96- meter-(13 -ft-) diameter spherical tank[R]. NASA TND-7019,1970.
  • 7Dewitt R L, Stochl R J ,Johnson W R. Experimental evalu ation of pressurant gas injectors during the pressurized dis- charge of liquid hydrogen[R]. NASA TND-3458,1966.
  • 8Barsi S, Kassemi M. A tank self pressurization experiment using a model fluid in normal gravity[R]. AIAA 2005- 1143,2005.
  • 9Barsi S,Kassem M. Numerical and experimental compari sons of the self-pressurizaton behavior of an LH2 tank in normal gravity[J]. Cryogenics,2008,48(3-4) :122 -129.
  • 10Gary G,Alfredo L,Frank C,et al. CFD modeling of helium pressurant effects on cryogenic tank pressure rise rates in normal gravity[R]. AIAA 2007-5524,2007.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部