期刊文献+

基于并联卷积神经网络的水果品种识别 被引量:2

Fruit variety recognition based on parallel convolutional neural network
下载PDF
导出
摘要 为了解决传统的水果图像识别算法在特征提取上的缺陷,以及传统卷积神经网络识别率低的问题,设计了一种基于并联卷积神经网络来提取水果特征的识别方法,利用ELU激活函数替代ReLU激活函数,利用最大类间距损失函数结合传统SoftmaxWithLoss损失函数来提高对相似品种的识别准确率。选取Fruit-360数据集中的8个品种,利用边界均衡生成对抗网络(BEGAN)结合传统的数据增强方法生成大量高质量的数据集,并用其进行训练。结果表明,该模型对8个品种的平均识别准确率达98.85%,具有良好的识别效果。 In order to solve the defects of traditional fruit image recognition algorithms in feature extraction and the low recognition accuracy of traditional convolutional neural networks,a parallel convolutional neural network was proposed to extract fruit features.ELU activation function was introduced instead of ReLU activation function in the proposed model.Besides,a combination of maximum class spacing loss function and the traditional SoftmaxWithLoss loss function was designed to improve the recognition accuracy of similar varieties.The data of 8 fruit varieties in Fruit-360 data set was selected in the present study,and enhanced by the boundary equilibrium generative adversarial network(BEGAN)combined with the traditional data augmentation to generate a large number of high-quality data for model training.It was shown that the average recognition accuracy of 8 fruit varieties reached 98.85%and exhibited good recognition effect.
作者 李超 李锋 黄炜嘉 LI Chao;LI Feng;HUANG Weijia(College of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212000,Jiangsu,China)
出处 《浙江农业学报》 CSCD 北大核心 2022年第11期2533-2541,共9页 Acta Agriculturae Zhejiangensis
基金 国家自然科学基金(61671221)。
关键词 图像识别 深度学习 边界均衡生成对抗网络 卷积神经网络 image recognition deep learning boundary equilibrium generative adversarial network convolution neural network
  • 相关文献

参考文献12

二级参考文献98

  • 1杨蜀秦,宁纪锋,何东健.BP人工神经网络识别玉米品种的研究[J].西北农林科技大学学报(自然科学版),2004,32(B11):162-164. 被引量:26
  • 2樊亚军,曲仕茹.利用BP神经网络实现三维飞机目标识别[J].郑州大学学报(工学版),2004,25(4):56-59. 被引量:7
  • 3TIAN Y Q,MCCALL D G,TAN J. Intelligent machine vision for meat eating quality assessment[ C ]//Proceedings of the First Joint Australia and New Zealand Biennial Conference: DICTA' 97 ( Digital Image Computing Techniques and Applications and IVCN2' 97. ). Auckland, New Zealand : Massey University,Albany Campus, 1997:567 - 572.
  • 4O' FARREL M,LEWIS E,FLANAGAN C,et al. Comparison of kNN and neural network methods in the classification of spectral data from an optical fiber-based sensor system used for quality control in the food industry[J]. Sensors and Actuators,2005,111/112:354 - 362.
  • 5O' FARREL M,LEWIS E,FLANAGAN C,et al. Design of a system that uses optical-fiber sensors and neural networks to control a large-scale industrial oven by monitoring the food quality online[J]. IEEE Sensors Journal, 2005,5(5) :1407 - 1420.
  • 6TRUEBA E A,OROPEZA M J L,ORTIZ C A,et al. Identification of eroded zones with digital images using artificial neural networks [ J ]. Agrociencia,2004 ,38 (6) :573 - 581.
  • 7AHMAD I S,REID J F,PAULSEN M R,et al. Color classifier for symptomatic soybean seeds using image processing[J]. Plant Disease,1999,83(4) : 320 - 327.
  • 8章毓晋.图像分析[M].2版.北京:清华大学出版社,2005.
  • 9Kavdir. Apple Sorting Using Artificial Neural Networks and Spectral lmaging[J ]. American Society of Agricultural Engineers, 2002, 45(6) : 1995-2005.
  • 10Yimyam P, Chalidabhongse T, Sirimmboon P, et al. Physical Properties Analysis of Mango Using Computer Vision[EB/OL]. Http://2005. iccas, org/submission/paper/upload/2 ICCAS2005-188-Chalidabhongse. pdf.

共引文献1986

同被引文献30

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部