期刊文献+

基于LSTM的沪深300ETF期权定价模型研究 被引量:2

Research on Option Pricing Models of CSI 300ETF Based on LSTM
下载PDF
导出
摘要 将深度学习算法中的长短记忆神经网络(LSTM)引入期权定价的研究中.构建了沪深300ETF看涨期权和看跌期权的LSTM定价模型,进行了实证分析,并和BP神经网络模型的预测结果进行了对比.结果表明,LSTM神经网络模型的预测精度与深度学习的训练次数有关,且LSTM期权定价模型的预测效果要优于传统的BP模型. In this paper,the neural network of long and short time memory(LSTM)in deep learning algorithm is introduced into the research of option pricing.The LSTM pricing models of CSI 300ETF call option and put option are constructed,the empirical analysis is made,and the prediction results are compared with those of BP neural network model.The results show that the prediction accuracy of the LSTM neural network model is related to the training times of deep learning,and the prediction effect of the LSTM option pricing model is better than the traditional BP model.
作者 赵可景 张金良 朱怡梦 ZHAO Kejing;ZHANG Jinliang;ZHU Yimeng(School of Mathematics and Statistics,Henan University of Science and Technology,Luoyang 471000,Henan,China)
出处 《山西师范大学学报(自然科学版)》 2022年第3期31-38,共8页 Journal of Shanxi Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(51675161).
关键词 期权定价 长短记忆神经网络(LSTM) BP神经网络 300ETF期权 option pricing long and short time memory neural network(LSTM) BP neural network 300 ETF options
  • 相关文献

参考文献9

二级参考文献60

  • 1黄海南,钟伟.GARCH类模型波动率预测评价[J].中国管理科学,2007,15(6):13-19. 被引量:39
  • 2陈荣达.基于Delta-Gamma-Theta模型的外汇期权风险度量[J].系统工程理论与实践,2005,25(7):55-60. 被引量:15
  • 3蒋祥林,王春峰.基于贝叶斯原理的随机波动率模型分析及其应用[J].系统工程,2005,23(10):22-28. 被引量:15
  • 4张彩玉,屠巧平.期权风险管理探讨[J].商丘师范学院学报,2006,22(4):114-115. 被引量:4
  • 5彭丽芳,孟志青,姜华,田密.基于时间序列的支持向量机在股票预测中的应用[J].计算技术与自动化,2006,25(3):88-91. 被引量:32
  • 6Qi M, Maddala G S. Option pricing using artificial neural networks: the case of S&P 500 index call options[C]//Abu- Mostafa Y, Moody J, Weigend A Neural Networks in Financial Engineering: Proceedings of the Third International Confer- ence on Neural Networks in the Capital Markets, Reference AP.N. New York: World Scientific, 1996:78- 91.
  • 7Garcia R, Gencay R. Pricing and hedging derivative securities with neural networks and a homogeneity hint[J]. Journal of Econometrics,2000, 94(1/2) : 93 - 115.
  • 8Gencay R, Qi M. Pricing and hedging derivatives securities with neural networks: Bayesian regularization, early stopping and bagging[C]. IEEE Transactions on Neural Networks, 2001,12(4) :726 - 734.
  • 9Liu M. Option pricing with neural networks[G]//Amari SI, Xu L, Chan LW, King I, Leung KS. In Progress in Neural Information Processing, volume 2, Springer - Verlag, 1996: 760 - 765.
  • 10Ander U, Kom O, Schmitt C. Improving the pricing of options: a neural network approach[J]. Journal of Forecasting, 1998, 17(5/6) : 369 - 388.

共引文献81

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部