期刊文献+

基于SDN的天地一体化网络控制器部署方法综述 被引量:3

Review of Controller Deployment Methods for Space-ground Integrated Network Based on SDN
下载PDF
导出
摘要 软件定义网络(SDN,software define network)推动了传统网络的发展,将SDN引入天地一体化网络能够极大程度地调动各层级网络的资源,实现天地一体化网络的智能管控;首先,介绍了天地一体化网络和软件定义网络,论述了基于SDN的天地一体化网络架构的研究现状;随后,介绍了SDN控制器的性能指标并对比了当前的SDN多控制器部署方法,综述了基于SDN的天地一体化网络的控制器部署策略;最后,对未来基于SDN的天地一体化网络控制器部署方法进行了展望和归纳总结。 Software-defined network(SDN)promotes the development of traditional network.The introduction of the SDN into the space-ground integrated network can greatly mobilize the resources of networks at all levels.At the same time,the intelligent management and control of the space-ground integrated network are realized.Firstly,the space-ground integrated network and software-defined network are introduced,and the research status of the space-ground integrated network architecture based on the SDN is discussed.Then,the performance index of the SDN controller is introduced,compared with the current SDN multi-controller deployment method,the controller deployment strategy of the SDN based on the space-ground integrated network is summarized.Finally,the future deployment method of the SDN based on the space-ground integrated network controller is prospected and summarized.
作者 万颖 钱克昌 邢鹏 WAN Ying;QIAN Kechang;XING Peng(Aerospace Information Institute,Space Engineering University,Beijing 101416,China;Unit 32151,Xingtai 054000,China)
出处 《计算机测量与控制》 2022年第11期1-10,31,共11页 Computer Measurement &Control
基金 国家自然科学基金(61901523)。
关键词 软件定义网络 多控制器 天地一体化网络 控制器部署 性能指标 software-defined network multiple controllers space-ground integrated network controller deployment performance indicators
  • 相关文献

参考文献33

二级参考文献194

  • 1王甫红,凌三力,龚学文,郭磊.风云三号C卫星星载GPS/BDS分米级实时定轨模型研究[J].武汉大学学报(信息科学版),2020,45(1):1-6. 被引量:8
  • 2潘锐,朱大铭,马绍汉,肖进杰.k-Median近似计算复杂度与局部搜索近似算法分析[J].软件学报,2005,16(3):392-399. 被引量:8
  • 3梁霞,黄明,梁旭.改进的自适应遗传算法及其在作业车间调度中的应用[J].大连铁道学院学报,2005,26(4):33-35. 被引量:5
  • 4沈荣骏.我国天地一体化航天互联网构想[J].中国工程科学,2006,8(10):19-30. 被引量:130
  • 5[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 6[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 7[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 8[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 9[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 10[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.

共引文献493

同被引文献37

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部