期刊文献+

基于粒子群算法的SVM飞机空调系统状态评估 被引量:1

State Evaluation of SVM Aircraft Air Conditioning System Based on Particle Swarm Algorithm
下载PDF
导出
摘要 飞机空调系统对飞机和旅客都起着至关重要的作用,对飞机QAR(quick access recorder)空调数据的健康评价进行预测,可以保证乘客和机组的飞行舒适性、安全性,以及电子电气设备工作的稳定性,避免机械故障导致的航班延误或取消;为提高空调系统状态监控SVM模型预测的准确度,提出了一种基于粒子群算法的SVM空调状态评估方法;通过实验结果可知,使用A320飞机空调系统状态监控收集的样本数据进行预测分析,提出的方法能够有效评估空调系统状态。 Aircraft air-conditioning system plays a vital role for both aircraft and passengers.Predicting the health evaluation of aircraft quick access recorder(QAR)air-conditioning data can ensure the flight comfort and safety of passengers and crew,which can also improve the stability of equipment operation to avoid the flight delay or cancellation caused by equipment failures.In order to improve the prediction accuracy of the support vector machine(SVM)model of air-conditioning system state monitoring,a SVM air-conditioning state evaluation method based on the particle swarm algorithm is proposed.The experimental results show that the proposed method can effectively evaluate the state of the air-conditioning system,the sample data collected by the A320 aircraft air-conditioning system state monitoring is used to conduct the predictive analysis.
作者 李义勇 时建平 张灵杰 LI Yiyong;SHI Jianping;ZHANG Lingjie(Beijing Bowei Aviation Facilities Management Co.,Ltd.,Beijing 100621,China;University of Electronic Science and Technology of China,Chengdu 611731,China;Chengdu Airlines Co.,Ltd.,Chengdu 610200,China)
出处 《计算机测量与控制》 2022年第11期257-264,共8页 Computer Measurement &Control
关键词 空调系统 状态评估 支持向量机 粒子群算法 air conditioning system state assessment support vector machines particle swarm algorithm
  • 相关文献

参考文献7

二级参考文献45

共引文献44

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部