期刊文献+

基于元路径的异构信息网络的影响力建模

Modeling of Influence of Heterogeneous Information Network Based on Meta-path
下载PDF
导出
摘要 对影响力的评估不仅有助于识别有影响力的用户,而且有助于对社交平台和应用程序的设计提供方案。然而,现有的社会影响分析工作大多集中在同质信息网络上。很少有研究系统地研究如何挖掘异构信息网络中节点间的影响强度。为此提出了一种基于元路径的信息熵模型来模拟异构信息网络中的社会影响。通过设置元路径,不仅可以灵活地集成异构信息,还可以获取潜在的链路信息来度量节点的影响。实验结果表明,提出方法的MPIE的Kendall’s tau值为0.38,说明具有较好性能。 Evaluation of influence not only helps to identify influential users,but also helps to provide solutions for the design of social platforms and applications.However,most of the existing social impact analysis works focus on homogeneous information networks.Few studies have systematically studied how to mine the intensity of influence among nodes in heterogeneous information networks.This paper proposes a meta-path-based information entropy model to simulate the social impact in heterogeneous information networks.Setting meta-paths not only can integrate heterogeneous information flexibly,but also can obtain potential link information to measure the influence of nodes.The experimental results show that the Kendall’s tau value of MPIE is 0.38,which indicates that the proposed method has good performance.
作者 朱继阳 ZHU Jiyang(State Grid East Inner Mongolia Information&Telecommunication Company,Hohhot 010010,China)
出处 《微型电脑应用》 2022年第11期144-147,共4页 Microcomputer Applications
关键词 异构信息 影响力 社交网络 元路径 信息熵 heterogeneous information influence social network meta-path information entropy
  • 相关文献

参考文献6

二级参考文献132

  • 1Wang Z, Sun LF, Zhu WW, Yang SQ, Li HZ, Wu DP. Joint social and content recommendation for user-generated videos in online social network. IEEE Trans. on Multimedia, 2013,15(3):698-710. [doi: 10.1109/TMM.212.2237022].
  • 2Quijano-Sanchez L, Recio-Garcia J, Diaz-Agudo B. Social factors in group recommender systems. ACM Trans. on Intelligent Systems and Technology, 2013,4(1):Article No.8. [doi: 10.1145/2414425/2414433].
  • 3Social Network Analysis. A brief introduction. 2007. http://orgnet.Com/sna.html.
  • 4Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks. In: Proc. of the IJCAI. AAAI Press, 2011. 2644-2649. [doi: IO.5591/978-1-57735-516-8/IJCAI11-440].
  • 5Jamali M, Ester M. A matrix factorization technique with trust propagation tbr recommendation in social networks. In: t'roe, ot tlae ReeSys 2010. New York: ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 6Moghaddam S, Jamali M, Ester M. ETF: Extended tensor factorization model for personalizing prediction of review helpfulness. In: Proc. of the ACM WSDM 2012. New York: ACM Press, 2012. 163-172. Idol: 10.1145/2124295.2124316].
  • 7Hoens TR, Blanton M. A private and reliable recommendation system for social networks. In: Proc. of the IEEE SocialCom. Washington: IEEE Computer Society, 2011. 816-825. Idol: 10.1109/SocialCom.2010.124].
  • 8Berjani B, Strufe T. A recommendation system for spots in location-based online social networks. In: Proc. of the SNS 2011. New York: ACM Press, 201 I. 1-4. [doi: 10.I 145/1989656.1989660].
  • 9Kim HK, Ryu YU. Cho Y. Customer-Driven content recommendation over a network of customers. IEEE Trans. on Systems, Man and Cybernetics, Part A, 2012,42(1):48-56.
  • 10Purushotham S, Liu Y, Kuo CC. Collaborative topic regression with matrix factorization for recommendation systems. In: Proc. of the ICML. 2012. 759-766.

共引文献298

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部