期刊文献+

文本情感可视分析技术及其在人文领域的应用 被引量:2

Text sentiment visual analysis technology and its application in humanities
下载PDF
导出
摘要 情感分析是对信息情感倾向的挖掘,主要用于舆情监测、商品评论分析以及信息检索等方面。随着社交媒体的快速发展,文本数据量呈现爆炸性增长,文本情感分析成为自然语言处理领域重要的研究热点之一。与此同时,由于情感数据具有海量、时变、非结构性、强关联性的特点,能够直观高效地呈现情感倾向的可视分析技术在这个领域得到广泛应用。回顾了近年来的情感可视分析研究,从表现形式——“主题词”“关联”“演变”“时空分布”4个方面阐述文本情感可视分析方法,并对未来情感分析技术及文本情感可视分析研究进行展望。 Sentiment analysis is the mining of information sentiment tendency,which is mainly used for public opinion monitoring,commodity review analysis,and information retrieval.With the rapid development of social media,the volume of text data has shown explosive growth,and text sentiment analysis has become one of the important research hotspots in the field of natural language processing.At the same time,due to the characteristics of massive,time-varying,unstructured and strongly correlated sentiment data,visual analysis techniques that can present sentiment tendencies intuitively and efficiently are widely used in this field.The recent research on visual analysis of sentiment was reviewed,and according to the presentation form“topic words”,“association”,“evolution”,“spatial and temporal distribution”four aspects of text sentiment visual analysis methods were described,and future sentiment analysis techniques as well as text sentiment visual analysis research were foreseen.
作者 张伶俐 褚琦凯 王桂娟 张巍瀚 蒲慧 宋振金 吴亚东 ZHANG Lingli;CHU Qikai;WANG Guijuan;ZHANG Weihan;PU Hui;SONG Zhenjin;WU Yadong(School of Computer Science and Engineering,Sichuan University of Science and Engineering,Zigong 643000,China;School of Automation and Information Engineering,Sichuan University of Science and Engineering,Zigong 643000,China;School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang 621000,China;School of Information Engineering,Southwest University of Science and Technology,Mianyang 621000,China)
出处 《大数据》 2022年第6期56-73,共18页 Big Data Research
基金 四川轻化工大学人才引进项目(No.2020RC20)。
关键词 文本情感分析 可视分析 数据分析 机器学习 text sentiment analysis visual analysis data analysis machine learning
  • 相关文献

参考文献7

二级参考文献94

共引文献218

同被引文献75

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部