期刊文献+

小样本条件下基于属性权重Shapley值分配的粗糙集决策模型

Rough set decision-making model based on shapley value assignment of attribute weight under the condition of small sample
原文传递
导出
摘要 小样本条件下,根据粗糙集理论构建的决策规则受数据来源偶然性误差影响较大,个别数据样本难以反映真实知识关系.为解决小样本条件下粗糙集决策规则可信度未知的问题,提出信息区分量、属性影响方向等概念,运用Shapley值法进行属性权重分配,求取每个属性对决策结果的影响方向,进而得出决策规则的参考信度,以寻求真实可信且适合工程实际的决策规则.实例分析论证了所提方法的可行性以及对数据来源误差的分辨能力. The decision rules based on the rough set theory under the condition of small samples are greatly affected by the chance error of the initial data, and individual data samples are difficult to reflect the true knowledge relationship.To solve the problem of unknown reliability of rough set decision rules under the condition of small samples, concepts such as the amount of information distinction and the influence direction of attributes are proposed, and attribute weights are assigned using the Shapley value method. The influence direction of each attribute on the decision result is obtained,and the reference reliability of the decision rule is obtained to seek credible and suitable decision-making rules for engineering. Finally, the feasibility of the proposed method and the ability of discriminating the error of the data source are demonstrated through cases.
作者 李志远 刘思峰 杜俊良 方志耕 陶秋澄 LI Zhi-yuan;LIU Si-feng;DU Jun-liang;FANG Zhi-geng;TAO Qiu-cheng(College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第10期2677-2684,共8页 Control and Decision
基金 国家自然科学基金面上项目(72071111) 国家科技部科技创新引智基地项目(G20190010178) 中央高校基本科研业务费专项资金项目(NC2019003) 南京航空航天大学研究生创新基地(实验室)开放基金项目(kfjj20200908)。
关键词 SHAPLEY值 粗糙集 决策规则 信度 Shapley value rough set decision rule reliability
  • 相关文献

参考文献14

二级参考文献59

  • 1李军林,李岩.合作博弈理论及其发展[J].经济学动态,2004(9):79-85. 被引量:30
  • 2闫德勤,刘菲斐.属性约简中的差别矩阵与近似精度[J].小型微型计算机系统,2005,26(11):1975-1977. 被引量:7
  • 3胡明礼,刘思峰.基于有限扩展优势关系的粗糙决策分析方法[J].系统工程,2006,24(4):106-110. 被引量:14
  • 4曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1998..
  • 5Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria decision analysis [J]. European J of Operational Research, 2001,129(1):1-47.
  • 6Greco S, Matarazzo B, Slowinski R. Generalizing rough set theory through dominance-based rough set approaeh[C]// 10th Int Conf on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Heidelberg: Springer-Verlag,2005 : 1-11.
  • 7Greco S, Matarazzo B, Slowinski R. Dominance- based rough set approach to case-based reasoning [C]// 3th Int Conf on Modeling Decisions for Artificial Intelligence. Heidelberg: Springer-Verlag, 2006: 7-18.
  • 8Shao M W, Zhang W X. Dominance relation and rules in an incomplete ordered information system[J]. International Journal of Intelligent Systems, 2005,20:13-27.
  • 9Xibei Yang, Jingyu Yang, Chen Wu, et al. Domi nance-based rough set approach and knowledge reduc tions in incomplete ordered information system [J]. Information Sciences 2008,178 : 1219-1234.
  • 10Greco S, Inuiguchi M, Slowinski R. Fuzzy rough setsand multiple-premise gradual decision rules[J]. Int J of Approximate Reasoning, 2006, 41(2): 179-211.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部