期刊文献+

基于JMP的AOI检测能力分析

An Analysis of Automatic Optical Inspection(AOI) Ability Based on JMP
下载PDF
导出
摘要 目前,光学检查设备AOI已经成为TFT-LCD行业主要的微观缺陷检查设备,并大量应用到各工艺检查单元。随着全球面板产业竞争的加剧,产线和产品的智能化、高效化需求日渐剧增,但各个工序的检测设备维度往往不唯一,这为设备间数据的流通和统一造成障碍,为解决此类问题,该文基于JMP的数据预测和分析功能,对设备参数进行优化和重新设计,并对新参数进行ROC验证,验证结果达到预期。同时为Cell自动化监控和反馈机制的建立提供理论和数据支持。 At present, the automatic optical inspection(AOI) equipmen thas become the main micro defect inspection equipment in the TFT-LCD industry, and is widely used in various process inspection units. With the increased competition in the global panel industry, the demand for intelligent and efficient production lines and products is increasing sharply.However, the dimension of testing equipment in each process is often not unique, which creates obstacles for the flow and unification of data between equipment, so as to solve such problems. Based on the data prediction and analysis function of JMP, the equipment parameters are optimized and redesigned, and the new parameters are verified by ROC. The verification results meet the expectations. At the same time, this paper provides theoretical and data support for the establishment of cell automatic monitoring and feedback mechanism.
作者 刘海龙 王成祥 孟战虎 康慧 王雨强 王星宇 LIU Hailong;WANG Chengxiang;MENG Zhanhu
出处 《科技创新与应用》 2022年第34期55-58,共4页 Technology Innovation and Application
关键词 AOI JMP ROC 预测建模 PEAK AOI JMP ROC predictive modeling PEAK
  • 相关文献

参考文献7

二级参考文献127

  • 1卢荣胜.自动光学检测技术的发展现状[J].红外与激光工程,2008,37(S1):120-123. 被引量:11
  • 2季秀霞,章云,曾歆懿.SMT焊膏印刷质量AOI技术的研究[J].自动化技术与应用,2007,26(4):114-117. 被引量:4
  • 3刘锋,于凯,李相津,李正蘍,李斗熙.TFT-LCD生产中毛刷清洗工艺的研究[J].现代显示,2007(10):54-56. 被引量:8
  • 4HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 6VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 7LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 8TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 9SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 10TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.

共引文献352

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部