期刊文献+

基于改进半监督生成对抗网络的少量标签轴承智能诊断方法 被引量:7

Intelligent diagnosis method for bearings with few labelled samples based on an improved semi-supervised learning-based generative adversarial network
下载PDF
导出
摘要 轴承在线监测大数据主要是由大量无标签数据和少量有标签数据组成的。已有的智能诊断方法多依赖于大量有标签数据的监督学习。针对此问题,提出一种改进半监督生成对抗网络,利用生成器与分类器的对抗学习增强分类器的辨识能力,提出了增强特征匹配算法,借助分类器的深层特征优化网络损失值计算,进而提高网络收敛速度,结合半监督学习使用少量有标签数据进一步提升分类器的学习能力,最终实现对无标签数据的正确归类。使用四组轴承试验数据的迁移学习验证和对比了改进深度网络对不同轴承、工况、故障生成模式、故障程度的辨识能力,结果表明该网络具有更高的分类准确率和更快的收敛速度。 The big data of bearings obtained in online monitoring are mainly composed of a large amount of data without labels and a small amount of data with labels. But, successful applications of many popular intelligent fault diagnosis methods rely on the supervised learning of large scale of labeled data. To solve this problem, an improved semi-supervised learning-based generative adversarial network(ISSL-GAN) was proposed. In the method, the classifier was endowed with more powerful classification capability through the adversarial learning mode between the generator and classifier. Furthermore, an enhanced feature matching algorithm was proposed to extract deep features from the intermediate layers of the whole network and join the loss function to speed up the convergence of the training process. Meanwhile, the semi-supervised learning was applied to make full use of few labeled data to improve the learning efficiency of the classifier. After training with plenty of unlabeled data and few labeled data, the obtained classifier can accurately discriminate the classes of analyzed data. The proposed network was applied to four experimental data sets, in each of them, through transfer learning from one bearing to another one, the classification ability for different bearings, working conditions, fault generation methods, and damage levels was verified and the results were compared with those by other deep networks. The results indicate that the proposed ISSL-GAN has much higher accuracy on bearing fault diagnosis and has faster convergence speed during training.
作者 邢晓松 郭伟 XING Xiaosong;GUO Wei(School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第22期184-192,共9页 Journal of Vibration and Shock
基金 四川省自然科学基金(2022NSFSC0575) 国家自然科学基金(61833002)。
关键词 深度学习 迁移学习 故障诊断 半监督学习 无标签数据 轴承 deep learning transfer learning fault diagnosis semi-supervised learning unlabeled data bearing
  • 相关文献

参考文献6

二级参考文献57

  • 1张琳,孙安全,王天一,杨新宇,张学礼.某型导弹装备的故障智能诊断[J].中南大学学报(自然科学版),2013,44(S1):216-220. 被引量:4
  • 2高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48. 被引量:46
  • 3陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 4GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 5HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 7BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 8WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 9BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 10ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.

共引文献749

同被引文献57

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部