期刊文献+

基于改进遗传算法的多源协调优化调度方法 被引量:5

Multi-source Coordinated Optimal Scheduling Method Based on Improved Genetic Algorithm
下载PDF
导出
摘要 为了解决电力系统中可再生能源并网消纳能力较差的问题,提出了一种风-光-水-火-储多源协调优化调度方法。该方法综合考虑系统功率平衡以及各种发电方式的容量、爬坡速率等约束,建立系统的购电成本和可再生能源消纳的目标函数,并采用层次分析法求得目标函数间的权值关系,再以改进的遗传算法对含等式约束的目标函数进行求解。结果表明:经优化调度后,系统可再生能源的弃置量由657 MW·h减小到125 MW·h,系统负荷的购电成本由18549.9万元下降到18518.2万元,体现了该优化方法的高效性,为电力系统中多能源调度问题提供一种高效准确的求解方法。 In order to solve the problem of poor capacity of renewable energy grid connected in power system,this paper proposes a multi-source coordinated optimal scheduling method of wind-photovoltaic-water–thermal-storage.The optimal scheduling method comprehensively considers the constraints of system power balance,capacity and ramp rate of various power generation modes,establishes the objective function based on the system power purchase cost and renewable energy consumption,obtains the weight relationship between the objective functions by using the analytic hierarchy process,and then solves the objective function with equality constraints by using the improved genetic algorithm.The results show that after the optimal scheduling,the disposal amount of renewable energy in the system is reduced from 657mwh to 125mwh,and the power purchase cost of the system load is reduced from 185.499 million yuan to 185.182 million yuan,which reflects the efficiency of the optimization method used in this paper,and provides an efficient and accurate solution for the multi energy scheduling problem in the power system.
作者 李如意 刘姗 许军德 杨菲 LI Ru-yi;LIU Shan;XU Jun-de;YANG Fei(Beijing Kedong Electric Power Control System Co.,Ltd.,Beijing 100192)
出处 《沈阳工程学院学报(自然科学版)》 2022年第4期43-50,共8页 Journal of Shenyang Institute of Engineering:Natural Science
基金 北京科东电力控制系统有限责任公司科技项目(52467M210016)。
关键词 互补系统 优化调度 新能源发电 层次分析法 遗传算法 Complementary system Optimized dispatching New energy power generation Analytic hierarchy process Genetic algorithm
  • 相关文献

参考文献8

二级参考文献81

共引文献119

同被引文献48

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部