期刊文献+

基于多粒度双向注意力机制的词义消歧深度学习方法

DEEP LEARNING METHOD FOR WORD SENSE DISAMBIGUATION BASED ON MULTI-GRANULARITY BI-DIRECTIONAL ATTENTION
下载PDF
导出
摘要 词义消歧的目标是在特定的上下文中识别歧义词的正确词义。传统的监督方法主要是利用上下文的数据,而忽略了丰富的词义定义等词汇资源。最近的研究发现将词义定义整合到神经网络对于词义消歧具有显著的改进效果。提出引入词义定义的基于多粒度双向注意力机制的词义消歧模型,该模型采用字符级、词级和上下文嵌入的表示,使用双向注意力机制获取上下文和词义定义之间的交互关系,消融实验验证了模型中每个组成的重要性。实验结果表明,这种建模方式可以有效地识别歧义词的正确词义,在SemEval-13-task#12和SemEval-15-task#13公开数据集上进行了测试,F1值分别可达到68.9%和73.1%。 The goal of word sense disambiguation is to identify the correct meaning of an ambiguous word in particular context.Traditional supervised methods mainly rely on massive context data,ignoring lexical resources like rich sense definitions.Recent studies have shown that incorporating sense definitions into neural networks for word sense disambiguation has made significant improvement.This paper proposes a word sense disambiguation model that integrates senses definitions with multi-granularity bi-directional attention.It used character-level,word-level,and context embedding representations,and used bi-directional attention to obtain the interaction between the context and sense definitions.The ablation study verified the importance of each component in the model.The experiment results show that the modeling method can effectively distinguish the correct word meanings of the disambiguation words,and the accuracy can reach 68.7%and 73.1%respectively when tested on the public data sets of the semeval-13-task#12 and the semeval-15-task#13.
作者 初钰凤 张俊 赵丽华 Chu Yufeng;Zhang Jun;Zhao Lihua(College of Information Science and Technology,Dalian Maritime University,Dalian 116026,Liaoning,China)
出处 《计算机应用与软件》 北大核心 2022年第11期194-200,共7页 Computer Applications and Software
关键词 词义定义 词义消歧 双向注意力 Sense definitions Word sense disambiguation Bi-directional attention
  • 相关文献

参考文献1

二级参考文献61

  • 1宋余庆,罗永刚,孙志挥.应用主分量分析与粗糙集处理的特征提取[J].计算机工程与应用,2004,40(22):48-50. 被引量:7
  • 2卢志茂,刘挺,郎君,李生.神经网络和贝叶斯网络在汉语词义消歧上的对比研究[J].高技术通讯,2004,14(8):15-19. 被引量:9
  • 3黄昌宁,李涓子.词义排歧的一种语言模型[J].语言文字应用,2000(3):85-90. 被引量:16
  • 4陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 5Nancy Ide and Jean Véronis.Introduction to the special issue on word sense disambiguation:The state of the art[J].In Computational Linguistics,1998,24(1):1-40.
  • 6H Schütze.Automatic word sense discrimination[J].Compu-tat ional Linguistics,1998,24(1):97-123.
  • 7董振东.HowNet[DB/OL].http://www.keenage.com.2002.
  • 8George A.Miller.(Ed.) WordNet:An on-line lexical database [J].International Journal of Lexicography,1990,3(4):235-312.
  • 9W A Gale,K W Church,D Yarowsky.Using bilingual materials to develop word sense disambiguation methods[A].Proceedings of the Fourth International Conference on Theoretical and Methodological Issues in Machine Translation[C].Montréal,Canada,1992.101-112.
  • 10David Yarowsky.Unsupervised word sense disambiguation rivaling supervised methods[A].In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics[C].Cambridge,MA.1995.189-196.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部