摘要
针对并行坐标下降(Parallel Coordinate Descent,PCD)在音频信号去噪过程中的运行时间成本问题,构建一种新的时域处理框架,并在此基础上提出基于联合稀疏表示和同时稀疏近似的Joint-PCD算法。新的框架是将每个分割的音频帧作为一个列向量生成信号矩阵,利用超完备字典,Joint-PCD算法每执行一次是对一个音频信号(矩阵)而不仅仅是对一个音频帧(向量)实施去噪。仿真结果表明,Joint-PCD不仅具有与PCD相同的去噪性能,而且加快了算法的收敛。
Aiming at the running time cost of parallel coordinate descent(PCD)in audio signal denoising process,a joint-PCD algorithm based on simultaneous sparse approximation and joint sparse representation is proposed by constructing a new time domain processing framework.The new framework used each segmented audio frame as a column vector to generate a signal matrix.Using an over-complete dictionary,the joint-PCD denoised an audio signal(matrix)rather than just an audio frame(vector).Simulation results show that joint-PCD not only has the same denoising performance as PCD,but also accelerates the convergence of the algorithm.
作者
何选森
徐丽
He Xuansen;Xu Li(School of Information Technology and Engineering,Guangzhou College of Commerce,Guangzhou 511363,Guangdong,China;College of Information Science and Engineering,Hunan University,Changsha 410082,Hunan,China)
出处
《计算机应用与软件》
北大核心
2022年第11期272-280,共9页
Computer Applications and Software
关键词
迭代收缩去噪
并行坐标下降
联合稀疏表示
同时稀疏近似
超完备字典
Iterative shrinkage denoising
Parallel coordinate descent
Joint sparse representation
Simultaneous sparse approximation
Over-complete dictionary