期刊文献+

基于时程深度学习的复杂流场流动特性表征方法 被引量:2

Deep learning representation of flow time history for complex flow field
下载PDF
导出
摘要 流场的特征分析与表征研究对流动机理的明确具有重要意义.然而湍流流场具有复杂的非定常时空演化特征,对其流场数据的低维表征有一定困难.针对此问题,本文提出了基于流场时程数据深度学习方法的湍流低维表征模型,实现了复杂流动数据的降维表征.分别建立了基于一维线性卷积、非线性全连接和非线性卷积的自动编码方法,对非定常时程数据进行降维并得到了低维空间到时域的解码映射关系,实现了特征提取与压缩.通过Re=2.2×10^(4)的方柱绕流场进行了研究与验证,结果表明:时程深度学习方法可以有效地实现流场的低维表征,适用于复杂湍流问题;非线性一维卷积自编码器对复杂流场的表征准确性优于全连接和线性卷积方法.本文方法是无监督训练方法,可应用于基于一点的传感器数据处理中,是研究复杂流场特征的新方法. Flow analysis and low-dimensional representation model is of great significance in studying the complex flow mechanism. However, the turbulent flow field has complex and unstable spatiotemporal evolution feature,and it is difficult to establish the low-dimensional representation model for the flow big data. A low-dimensional representation model of complex flow is proposed and verified based on the flow time-history deep learning method. One-dimensional linear convolution, nonlinear full connection and nonlinear convolution autoencoding methods are established to reduce the dimension of unsteady flow time history data. The decoding mapping from low-dimensional space to time domain is obtained to build the representation model for turbulence. The proposed method is verified by using flow around the square clyinder with Re = 2.2×10^(4). The results show that the flow time-history deep learning method can be used to effectively realize the low-dimensional representation of the flow and is suitable for solving the complex turbulent flow problems;the nonlinear one-dimensional convolutional autoencoder is superior to the full connection and linear convolution methods in representing the complex flow features. The method in this work is an unsupervised training method, which can be widely used in single-point-based sensor data processing, and is a new method to study the characteristics of turbulence and complex flow problems.
作者 战庆亮 白春锦 葛耀君 Zhan Qing-Liang;Bai Chun-Jin;Ge Yao-Jun(College of Transportation and Engineering,Dalian Maritime University,Dalian 116026,China;State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第22期155-164,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51778495,51978527) 桥梁结构抗风技术交通行业重点实验室(上海)开放课题(批准号:KLWRTBMC21-02) 中央高校基本科研业务费专项资金(批准号:3132022189)资助的课题。
关键词 时程深度学习 流场降维 卷积神经网络 湍流流场 流动表征 time-history deep learning dimensionality reduction of flow data convolution neural network turbulent flow field flow representation
  • 相关文献

参考文献4

二级参考文献32

  • 1姜华,席光.对流项二次迎风插值格式在非结构化网格中的应用[J].西安交通大学学报,2006,40(11):1246-1249. 被引量:4
  • 2张洪军,吕进.多普勒全场测速技术的进展[J].力学进展,2007,37(3):428-442. 被引量:5
  • 3PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3 900 [ J ]. Physics of Fluids (1994-present) , 2008, 20(8): 85-101.
  • 4ONG L, WALLACE J. Tile velocity field of the turbulent very. near wake of a circular cylinder [ J ]. Experiments in Fluids, 1996, 20(6): 441-453.
  • 5LOURENCO L M , SIHH C. Characteristics of the plane turbulent neat" wake of a circular cylinder: A particle image velocimetry study[ Z ]. Private Communication ( data taken from [8] ) ,1993.
  • 6DONG S, KARNIADAKIS G, EKMEKCI A, et al. A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake [ J ]. Journal of Fluid Mechanics, 2006, 569( 1 ) : 185-207.
  • 7BEAUDAN P, MOIN P. Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number [ R]. Stanfird : Stanfird University, 1994.
  • 8KRAVCHENKO A G, MOIN P. Numerical studies of flow over a circular cylinder at ReD = 3 900 [ J ]. Physics of Fluids, 2000, 12(2): 403-417.
  • 9MITTAL R, MOIN P. Suitability of" upwind=biased finite difference schemes Ibr large-eddy simulation of turbulent flows [J]. AIAA Journal, 1997, 35(8): 1415-1417.
  • 10FRANKE J, FRANK W. Large eddy simulation of the flow past a circular cylinder at< i> Re</i>< sub> D</sub> = 3 900 [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10) : 1191 - 1206.

共引文献38

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部