期刊文献+

基于散射图卷积网络的PolSAR影像地物分类 被引量:1

Scattering graph convolutional network-based PolSAR image classification
原文传递
导出
摘要 本文针对极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)图像解译中特征提取不足与目标分类困难的问题,进行了深入的研究,提出了一种基于散射图卷积网络的PolSAR影像分类方法.在特征提取方面,本文给出了极化散射编码的一维表现形式;同时,考虑目标散射的特性和像素间的复杂关系,结合图论理论,提出了一种新的散射机制的图表示模型,来刻画复杂的极化散射机理;最后,将这种新的散射建模方法和图卷积网络结合,提出了PolSAR图像分类的新方法,从而更加高效、高精度地完成分类任务.实验结果表明,在5幅公开的PolSAR图像上(PolSF数据集),本文提出的算法具有良好的分类性能. In this paper, we address the problem of insufficient feature extraction and the difficulty in interpreting the polarimetric synthetic aperture radar(PolSAR) images with all-day and all-weather capability and propose a novel scattering graph convolution network for PolSAR image classification. In terms of feature extraction, this paper presents a one-dimensional representation of polarimetric scattering coding. Simultaneously,considering the target scattering characteristics and the complex relationship among pixels, combined with the graph theory, a novel graph representation model of scattering mechanism is proposed to describe the complex polarization scattering mechanism. Finally, a polarimetric SAR image classification model based on the scatter graph convolution network is proposed to improve the decoding and classification of the PolSAR data. The experimental results regarding the five images of the PolSF dataset demonstrate that the proposed algorithm exhibits superior performance.
作者 刘旭 李玲玲 刘芳 杨淑媛 侯彪 焦李成 Xu LIU;Lingling LI;Fang LIU;Shuyuan YANG;Biao HOU;Licheng JIAOI(School of Artificial Intelligence,XidianUniversity,Xi'an710071,China;Key Laboratory of Intelligent Perception and Image Understanding of the Ministry of Education of China,Xi'an 710071,China;International Research Center of Intelligent Perception and Computation,Xi'an 710071,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2022年第10期1900-1914,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:U1701267,62006177,61871310,61902298,61573267,61906150) 中国博士后基金(批准号:2019M663641,2017M613081) 中央高校基本科研业务费专项资金(批准号:XJS201903,XJS201901,JBF201905)资助。
关键词 散射 特征表示 图卷积网络 极化SAR图像 地物分类 scattering feature representation graph convolutional network PolSAR image classification
  • 相关文献

参考文献7

二级参考文献24

共引文献139

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部