期刊文献+

框架结构空间自参数共振的试验与数值研究 被引量:2

Experimental and numerical studies on spatial self-parametric resonance of frame structure
下载PDF
导出
摘要 工程中的框架结构经常受到周期性荷载的作用。在周期荷载作用下,框架结构可能发生空间自参数共振。采用数值计算和试验相结合的方法,研究了框架结构空间自参数共振的稳定性。首先基于哈密顿原理给出了一般框架结构空间动力失稳的理论公式,采用Newmark方法求解不稳定位移响应,用能量增长指数(EGE)确定了框架结构的参数共振稳定边界。此外对框架结构进行了空间自参数共振试验。通过数值计算和试验结果确定和比较了空间自参数内共振和非内共振的稳定边界,数值稳定边界与试验结果吻合较好。结果表明,小的外部激励可以激发框架结构的大振幅自参数共振,自参数内共振的不稳定区域远大于非内共振(一般情况)的不稳定区域,在框架结构设计中应尤其重视和避免空间自参数内共振的风险。 Frame structures in engineering are often subjected to periodic loads.Under action of periodic load,frame structure may have spatial self-parametric resonance.Here,the stability of spatial self-parametric resonance of frame structure was studied with numerical calculation and experiments.Firstly,based on Hamilton principle,the theoretical formula of spatial dynamic instability of general frame structures was derived,their unstable displacement responses were solved numerically with Newmark method,and the parametric resonance stability boundary of frame structure was determined using the energy growth exponent(EGE).Meanwhile,spatial self-parametric resonance experiments for frame structures were conducted.Stable boundaries of spatial self-parametric internal resonance and non-internal resonance were determined and compared with numerical calculation and experimental results.The results showed that numerical stable boundaries agree better with experimental results;small external excitation can excite large-amplitude self-parametric resonance of frame structure;the unstable region of self-parametric internal resonance is much larger than that of non-internal resonance under general situation;in frame structure design,special attention should be paid to the risk of spatial self-parametric internal resonance,and this risk should be avoided.
作者 刘伟 沈超 于越 李遇春 LIU Wei;SHEN Chao;YU Yue;LI Yuchun(College of Civil Engineering,Tongji University,Shanghai 200092,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第21期78-85,120,共9页 Journal of Vibration and Shock
基金 国家自然科学基金面上项目(51879191)。
关键词 框架结构 空间动力失稳 主参数共振 数值方法 试验方法 frame structure spatial dynamic instability principal parametric resonance numerical method experimental method
  • 相关文献

参考文献6

二级参考文献57

  • 1张紫龙,唐敏,倪樵.非线性弹性地基上悬臂输流管的受迫振动[J].振动与冲击,2013,32(10):17-21. 被引量:8
  • 2赵跃宇,杨相展,刘伟长,王连华.索-梁组合结构中拉索的非线性响应[J].工程力学,2006,23(11):153-158. 被引量:20
  • 3周银锋,王忠民.轴向运动粘弹性板的横向振动特性[J].应用数学和力学,2007,28(2):191-199. 被引量:28
  • 4Irvine H M. Cable structure [ M ]. Cambridge, Massachusetts: The MIT Press, 1981.
  • 5Harmonically T G. forced finite amplitude vibration of a string [J]. Journal of Sound and Vibration, 1977, 51 (4) : 483 - 492.
  • 6Lilien J L, Da Costa A P. Vibration amplitude caused by parametric excitation of cable stayed structure [ J ]. Journal of Sound and Vibration, 1994, 174(2) :69-90.
  • 7Takahashi K. An approach to investigate the instability of the multiple-degree-of-freedom parametric dynamic system [ J ]. Journal of Sound and Vibration, 1981, 78(4) :519 -529.
  • 8Da Costa A P, Martins J A C, bridge stayed cables induced Brance F, et al. Oscillation of by periodic motions of deck and/or tower [J]. Journal of Engineering Mechanics, 1996, 122(7 ) :613 - 622.
  • 9De Sa'Caetano E. Cable Vibration in Cable-Stayed Bridges [ M ]. Switzerland : IANSE-AIPC-IVBH, 2007.
  • 10GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.

共引文献36

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部