期刊文献+

浮选专家系统在大山选矿厂160 m^(3)浮选流程中的应用 被引量:4

Application of Flotation Expert System in 160m^(3) Flotation Process in Dashan Beneficiation Plant
下载PDF
导出
摘要 德兴铜矿大山选矿厂160 m^(3)浮选工艺流程来矿扰动频繁,浮选槽液位、充气量和浮选药剂添加量等关键变量主要依据操作人员对现场泡沫状态的主观认识进行调控,为了提高生产效率,稳定矿物浮选指标,节约资源及人力成本,进行了浮选智能控制系统的工业应用研究。通过在160 m^(3)浮选流程的关键点位安装泡沫图像分析仪,引入了基于规则的浮选专家系统。浮选专家系统应用后,160 m^(3)浮选生产流程稳定性得到了提升,铜粗精矿品位波动明显减少。 The 160 m^(3) flotation process in Dashan Concentrator of Dexing Copper Mine has feeding frequent disturbances.The key variables such as flotation tank liquid level,aeration amount and flotation re⁃agent addition amount are mainly regulated according to the subjective understanding of the operator on the on-site foam state.In order to improve production efficiency,stabilize mineral flotation index,save resourc⁃es and labor costs,the industrial application of flotation intelligent control system is studied.A rule-based flotation expert system was introduced by installing a foam image analyzer at the key points of the 160 m^(3) flotation process.After the application of flotation expert system,the stability of 160 m^(3) flotation production process has been improved,and the fluctuation of copper rough concentrate grade has been significantly re⁃duced.
作者 付强 FU Qiang(Jiangxi Copper Environmental Resources Technology Co.,Ltd.)
出处 《现代矿业》 CAS 2022年第11期170-173,共4页 Modern Mining
关键词 铜浮选 泡沫图像 专家系统 自动控制 copper flotation froth image expert system automatic control
  • 相关文献

参考文献6

二级参考文献57

  • 1王会清.铜矿浮选过程控制模型的参数识别研究[J].云南冶金,2006,35(5):17-19. 被引量:1
  • 2蔡自兴,Durkin J,龚涛.高级专家系统:原理、设计及应用[M].北京:科学出版社,2006.
  • 3Liao S H.Expert system methodologies and applications-A decade review from 1995 to 2004[J].Expert Systems with Applications.2005,28(1):93-103.
  • 4Prasad R,Ranjan K R,Sinha A K.AMRAPALIKA:An expert system for the diagnosis of pests,diseases,and disorders in Indian mango[J].Knowledge-Based Systems,2006,19(1):9-21.
  • 5Lyu J J,Chen M N.Automated visual inspection expert system for multivariate statistical process control chart[J].Expert Systems with Applications,2009,36(3):5113-5118.
  • 6Wang Y D,Lim E P,Hwang S Y.Efficient mining of group patterns from user movement data[J].Data & Knowledge Engineering,2006,57 (3):240-282.
  • 7Zheng H F,Chen L D,Han X Z,et al.Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China:The importance of phosphorus application rates under drought conditions[J].Agriculture,Ecosystems & Environment,2009,132(1):98-105.
  • 8Shiue W,Li S T,Chen K J.A frame knowledge system for managing financial decision knowledge[J].Expert Systems with Applications,2008,35(3):1068-1079.
  • 9Dibuz S.A frame-based approach to conformance testing[J].Microprocessing and Microprogramming,1993,39(2):191-194.
  • 10Sorenson D,Grissom C K,Carpenter L,et al.A frame-based representation for a bedside ventilator weaning protocol[J].Journal of Biomedical Informatics,2008,41 (3):461-468.

共引文献140

同被引文献38

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部