摘要
数字经济发展对于全要素生产率和经济发展的促进作用已被广泛认可,数据作为关键生产要素的价值化是数字经济发展的重要标志,其能否和如何促进经济增长尚不明确。本文以14家大数据交易中心的陆续成立作为数字经济发展影响经济增长的“准自然”实验,采用异时双重差分(Heterogeneous Timing DID)模型,考察了数据价值化对全要素生产率的影响以及二者对经济增长影响的作用机制。实证结果表明,建立大数据交易中心引致的数据价值化,直接促进了所在省域内城市的全要素生产率提高和经济增长,同时通过全要素生产率的传导间接促进了经济增长;研究结论不仅证明了国家允许各城市建立大数据交易中心政策的有效性,而且可为大数据交易中心的广泛建立提供经验证据。
The value of data as a key factor of production is an important symbol of the development of digital economy,and it is not clear whether and how it can contribute to economic growth.In this article,we use the establishment of 14 big data trading centers as a quasi-natural experiment to investigate the impact of data valorization on total factor productivity and the impact of both on economic growth using a heterogeneous timing DID model.The mechanism of the effect of data valorization on total factor productivity and the effect of both on economic growth is investigated.The empirical results show that the data valorization caused by the establishment of big data trading centers directly contributes to the total factor productivity and economic growth of cities in the provinces on the one hand,and indirectly contributes to the economic growth through the transmission of total factor productivity on the other hand;the findings not only prove the effectiveness of the national policy of allowing cities to establish big data trading centers,but also provide empirical evidence for the widespread establishment of big data trading centers.The findings not only prove the effectiveness of the national policy of allowing cities to establish big data trading centers,but also provide empirical evidence for the widespread establishment of big data trading centers.
作者
胡泽鹏
Hu Zepeng(School of Marxism,Nankai University,Tianjin 300350,China)
出处
《工业技术经济》
北大核心
2022年第12期10-19,共10页
Journal of Industrial Technological Economics
基金
国家社会科学基金一般项目“和谐劳动关系的利益协调机制与制度安排研究”(项目编号:14BJY033)
天津市高等学校创新团队培养计划项目“以新发展理念引领现代化经济体系建设研究”(项目编号:TD13-5109)。
关键词
数据价值化
全要素生产率
经济增长
大数据交易中心
异时双重差分模型
数字经济
data valorization
total factor productivity
economic growth
data trading centers
heterogeneous timing DID model
digital economy