期刊文献+

旋转抛物-锥形蚀坑模型及其应用

Rotating parabolic-conical corrosion pit model establishment and its application
下载PDF
导出
摘要 点蚀是腐蚀介质环境中金属性能劣化的主要形式之一。蚀坑导致的应力集中会使结构整体强度退化,降低结构的安全性和可靠性。因此,准确的蚀坑模型对结构应力场的分析具有重要影响。为此,在典型的蚀坑形貌基础上,结合蚀坑张开角的定义,提出旋转抛物-锥形蚀坑模型,并通过有限元仿真与拉伸破坏试验验证了模型的有效性。结果表明:蚀坑导致的应力集中极大值处于接近坑底或坑口区域,旋转抛物-锥形蚀坑模型在蚀坑坑底、坑肩及坑口处的应力集中分布带比半椭球形蚀坑模型更准确,应力敏感性更强。 As one of the common degradation forms of metal structure exposed to the corrosive medium,pitting may cause the local stress concentration and decrease the strength,reliability and safety of the structure of equipment.Thus,an exact pit model is useful for the stress distribution analysis of the metal structure exposed to the corrosive medium.In this instance,by surveying the pattern of typical corrosive pitting,the concept of pit open angle is redefined,and a novel model called rotating parabolic-conial model is developed.Both FEM simulations and tensile experiments are performed to validate the accuracy and efficiency of the proposed model.It is shown that the maximum of the stress concentration caused by the pitting is generally located around the bottom or mouth area of the pit.Compared with the semi-ellipsoid model,the former is more accurate and sensitive on the description of the stress distribution around the bottom shoulder and mouth of a pit.
作者 刘德俊 田干 金国锋 杨正伟 任碧云 魏花丽 LIU Dejun;TIAN Gan;JIN Guofeng;YANG Zhengwei;REN Biyun;WEI Huali(The Missile Institute of Engineering,Rocket Force Engineering University,Xi’an 710025,China;Xi’an Institute of Aerospace Composites,Xi’an 710025,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第11期2230-2240,共11页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(52075541,52272446) 陕西省自然科学基金(2020JM-354)。
关键词 蚀坑 旋转抛物-锥形模型 半椭球形模型 应力集中 结构强度 corrosion pit rotating parabolic-conical model semi-ellipsoid model stress concentration structural strength
  • 相关文献

参考文献2

二级参考文献27

  • 1Ishihara S, Nan Z Y, McEvily A J, Goshima T, Sunada S. On the initiation and growth behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum [ J ]. International Journal of Fatigue, 2008, 30 : 1659-1668.
  • 2Medved J J, Breton M, Irving P E. Corrosion pit size distributions and fatigue lives-a study of the EIFS technique for fatigue design in the presence of corrosion [ J ]. International Journal of Fatigue, 2004, 26: 71-80.
  • 3Chaussumier M, Shahzad M, Mabvu C, Chieragatti R, Rezai-Aria F. A fatigue multi-site cracks model using coalescence, short and long crack growth laws, for anodized aluminum alloys [ J ]. Procedia Engineering, 2010, 2: 995-1004.
  • 4Dolley E J, Lee B, Wei R P. The effect of pitting corrosion on fatigue life [ J]. Fatigue Fract Engng Mater Struct, 2000, 23 : 555- 560.
  • 5Yibing Xiang, Yongming Liu. EIFS-based crack growth fatigue life prediction of pitting-corroded test specimens [ J ]. Engineering Fracture Mechanics, 2010, 77: 1314-1324.
  • 6Rokhlin S I, Kim J-Y. In situ ultrasonic monitoring of surface fatigue crack initiation and growth from surface cavity [ J ]. International Journal of Fatigue, 2003, 25:41-49.
  • 7Turnbull A, Wright L, Crocker L. New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a eorrosioin pit [ J]. Corrosion Science, 2010, 52 : 1492-1498.
  • 8Cerit M, Genel K, Eksi S. Numerical investigation on stress concentration of corrosion pit [ J]. Engineering Failure Analysis, 2009, 16: 2467-2472.
  • 9Schmidt C G, Kanazawa C H, Shockley D A, Flournoy T H. Corrosion-fatigue crack nucleation in the ALCLAD layer of 2024T3 commercial aircraft skin [ C ]//Structural Integrity in Aging Aircraft. San Francisco, California : ASME International Mechanical Engineering Congress and Exposition, 1995: 171-174.
  • 10Sankaran K K, Perez R, Jata K V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies [ J ]. Materials Science and Engineering, 2001, A297: 223-229.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部