期刊文献+

轴承变转速多模式下的深度卷积神经网络诊断方法研究 被引量:3

Study on Diagnosis Method of Deep Convolutional Neural Network under Bearing Variable Speed Conditions and Multi-Mode
下载PDF
导出
摘要 针对轴承运行转速、损伤模式复杂多变的情况,传统的基于特征提取的传统故障诊断方法的效果不尽如人意。提出了一种基于深度卷积神经网络的轴承变转速多模式下的诊断方法,以振动原始数据作为网络的输入,利用卷积层进行特征提取,池化层进行特征约简,全连接层和分类器层进行故障识别。在设置合理的网络结构和参数的基础上,利用变转速多模式下的轴承故障数据建立了四分类诊断模型,其对测试数据集的诊断结果准确率达到98.6%,高于BP神经网络(72.8%)、支持向量机(76.9%)和浅层卷积网络(93.1%),表明了该方法的有效性。 In view of bearing speed conditions and damage modes are complex and changeable,and the traditional fault diagnosis methods based on feature extraction are not satisfactory,a novel diagnosis method built on deep convolutional neural network is presented.The original vibration data is used as network input in this method,the convolutional layer of this model is applied to extract the features,then play down the dimensionality of features through the pooling layer,and the full connection layer and the classifier layer are used for fault identification.On the basis of setting reasonable network structure and parameters,the four-classification diagnosis model was established by using the fault data of under variable speed conditions and multi-mode.The diagnostic accuracy of the test sets reached 98.6%,higher than that of back propagation neural network(62.8%),support vector machine(72.9%)and shallow convolutional neural network(93.1%).
作者 潘玉娜 程道来 魏婷婷 刀建明 PAN Yuna;CHENG Daolai;WEI Tingting;DAO Jianming(School of Railway Transportation,Shanghai Institute of Technology,Shanghai 201418,China;School of Urban Construction and Safety Engineering,Shanghai Institute of Technology,Shanghai 201418,China;School of Mechanical Engineering,Shanghai Institute of Technology,Shanghai 201418,China)
出处 《应用技术学报》 2022年第4期358-363,共6页 Journal of Technology
基金 国家重点研发计划(2020YFB2007700) 上海市科委地方院校能力建设项目(17090503500)资助。
关键词 变转速 多模式 轴承 故障诊断 深度卷积神经网络 variable speed conditions multi-mode bearing fault diagnosis deep convolutional neural network
  • 相关文献

参考文献8

二级参考文献59

  • 1张梅军,唐建,陈江海.基于连续小波灰度图的变速箱故障诊断[J].振动.测试与诊断,2007,27(1):65-66. 被引量:7
  • 2张淑清,陈白,张立国.小波分析算法研究及在齿轮与滚动轴承故障诊断中应用[J].传感技术学报,2007,20(5):1196-1198. 被引量:7
  • 3GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 4HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 6BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 7WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 8BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 9ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 10VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.

共引文献505

同被引文献44

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部