期刊文献+

基于LSTM(长短期记忆)网络的城市轨道交通列车停站精度预测

Prediction of Urban Rail Transit Train Stop Accuracy Based on LSTM Network
下载PDF
导出
摘要 城市轨道交通列车进站自动停车过程中常会出现冲标和欠标问题,结合行车日志大数据分析和LSTM(长短期记忆)网络算法,提出了有效的解决方案。首先针对行车日志中大量的列车停车精度历史信息进行大数据分析,按1 d为一个统计周期对数据进行分期,并对数据进行预处理和多类拟合,对比后获得最佳拟合参数的时间序列。然后通过LSTM网络算法构建深度学习模型,对列车进站自动停车精度的分布进行预测。最后基于成都某地铁线列车停车精度的历史数据,对该LSTM预测模型进行训练与验证。结果表明:该预测模型可满足统计学上对相似度大于0.9的要求,从而验证了该模型的有效性和准确性。 In order to solve the problems of standard deviation and non-standard deviation in the process of automatic rail transit train parking,an effective solution is proposed based on the analysis of running log big data and the LSTM(long and short term memory)network algorithm.Firstly,the big data analysis is conducted for a large amount of historical information on train parking accuracy in the running log.In which the data is divided into stages with 1 d as a statistical cycle,then,the data is preprocessed and multi-type fitted.After comparison,the time series of the best fitting parameters is obtained.On this basis,a deep learning model is built by LSTM network algorithm to predict the distribution of automatic train parking accuracy.Finally,based on the historical data of train parking accuracy of a subway line in Chengdu,the LSTM prediction model is trained and verified.Results show that the prediction model can meet the statistical requirements for the similarity greater than 0.9.Thus,the effectiveness and accuracy of the model are verified.
作者 谢嘉琦 邹喜华 汪小勇 毕文峰 华志辰 XIE Jiaqi;ZOU Xihua;WANG Xiaoyong;BI Wenfeng;HUA Zhichen(School of Information Science and Technology,Southwest Jiaotong University,610031,Chengdu,China;不详)
出处 《城市轨道交通研究》 北大核心 2022年第11期62-65,71,共5页 Urban Mass Transit
基金 上海市自然科学基金资助项目(22ZR1422200)。
关键词 城市轨道交通 长短期记忆网络 WEIBULL分布 停车精度预测 urban rail transit LSTM network Weibull distribution stop accuracy prediction
  • 相关文献

参考文献4

二级参考文献21

  • 1张建华,贾利民,张锡第.新型模糊预测控制及其在列车自动运行过程中的应用[J].中国铁道科学,1996,17(4):101-109. 被引量:8
  • 2Yasunobu S, Miyamoto S, Ihara H.A fuzzy control for train automatic stopcontrol[J].Trans of the Society of Instntment and Control Engineers, 2002, E-2 ( 1 ).
  • 3Yoshimoto K, Kataoka K, Komaya K.A feasibility study of train automaticstop control using range sensors[C]//Proceedings of IEEE Intelligent Transportation Systems,2001:802-807.
  • 4Vapnik V N.The nature of statistical learning theory[M].New York, USA:Springer, 1995.
  • 5Rasmussen C E, Williams C K I.Gaussian processes for machine learning(Adaptive computation and machine learning)[M]. [S.l.] :The MIT Press,2005.
  • 6Seeger M.Gaussian processes for machine leaming[J].Int J Neural Syst,2004,14(2) :69-106.
  • 7Valiant L G.A theory of the leamable[J].Commun ACM, 1984, 27(11):1134-1142.
  • 8Schapire R E.The strength of weak learnability[J].Mach Learn, 1990,5 (2) : 197-227.
  • 9Freund Y, Schapire R E.Introduction to gaussian processes[J]. Journal of Computer and System Sciences, 1997,55 ( 1 ) : 119-139.
  • 10Zemel R S, Pitassi T.A gradient-based Boosting algorithm for regression problems[C]//Advances in Neural Information Processing Systems, 2001: 696-702.

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部