摘要
【目的/意义】突发公共卫生事件是公众关注的重要话题,极易引发网络信息泛滥和社会公众恐慌;了解公共卫生舆情地区的差异,为舆情调控提出建议。【方法/过程】利用网络爬虫技术爬取新浪微博自2020年1月17日至5月29日的COVID-19每日疫情通报博文下共计10余万条评论,运用情感分析和词频统计探讨地区舆情演变特征及其原因,利用面板数据模型估计方法对网络舆情情感得分进行预测。【结果/结论】模型预测我国7个地区,14个影响变量,样本记录938条;整体的情感得分区间为(0.1,0.6);其中华北、华中、东北地区情感得分均值区间为(0.25,0.35),而华东、华南、西南、西北地区的情感得分均值区间为(0.35,0.45);相关分析表明预测模型拟合具有统计学意义(P<0.05,R2=0.65)。【创新/局限】基于COVID-19的网络舆情呈现出地理区域特性和时间特性,通过建模测度手段对舆情进行监测,从而采取应对措施,但是还需考虑潜在因素的影响。
【Purpose/significance】Public health emergencies are an important topic of public concern,which can easily lead to the flood of online information and public panic;understand the differences in public health public opinion in regions,and make suggestions for public opinion regulation.【Method/process】Using web crawler technology,more than 100,000 comments were collected from the blog post of COVID-19 daily epidemic Notification of Sina Weibo from January 17th to May 29th,2020.The characteristics and reasons of regional public opinion evolution were discussed by emotional analysis and word frequency statistics,and the emotional score of online public opinion was predicted by panel data model estimation method.【Result/conclusion】The model predicts 7 regions in my country,14 influencing variables,and 938 sample records;the overall sentiment score interval is(0.1,0.6);among them,the average range of sentiment scores in North China,Central China,and Northeast China is(0.25,0.35),while the average range of sentiment scores in North China,Central China,and Northeast China is(0.25,0.35),while that of East China and Northeast China is(0.25,0.35).The average range of sentiment scores in South China,Southwest,and Northwest China is(0.35,0.45);correlation analysis shows that the prediction model fit is statistically significant(P<0.05,R2=0.65).【Innovation/limitation】The online public opinion based on COVID-19 presents the characteristics of geographic area and time,and the public opinion can be monitored by means of modeling and forecasting,and corresponding countermeasures can be taken,but still need to consider the impact of potential factors.
作者
张楠楠
邓三鸿
王昊
姚思瀚
ZHANG Nan-nan;DENG San-hong;WANG Hao;YAO Si-han(School of Information Management,Nanjing University,Nanjing 210023,China;Jiangsu Key Laboratory of Data Engineering and Knowledge Services,Nanjing 210023,China)
出处
《情报科学》
CSSCI
北大核心
2022年第9期123-129,共7页
Information Science
基金
教育部学位中心主题案例专项项目“公共卫生事件中的大数据管理与应用”(ZT20201035)
教育部新工科研究与实践项目“面向新工科、新基建的信息管理与信息系统多模态人才培养模式研究与实践”(E-JSJRJ20201316)。
关键词
公共卫生舆情
新冠肺炎
情感分析
地区差异
面板数据
public opinion about public health
coronavirus disease
emotion analysis
regional difference
panel data