期刊文献+

粒子群算法优化机器人路径规划的研究 被引量:12

Research on Improved Particle Swarm Optimization Algorithm for Robot Path Planning
下载PDF
导出
摘要 针对标准粒子群算法在移动机器人路径规划问题上存在的收敛速度慢、易陷入“早熟”现象以及路径不平滑等缺点,对粒子群优化算法进行改进,该方法在粒子陷入局部最优值时,对全局最优粒子的速度进行了轻微的干扰,从而提高收敛速度。为了平衡局部和全局搜索能力,提出了非线性惯性权重。最后提出一个考虑路径最短和平滑性的适应度函数。仿真结果表明,在一个动态环境中,改进之后的粒子群优化算法收敛快,并能避开障碍物,寻找到符合要求的最优路径。 Aiming at the shortcomings of the standard particle swarm algorithm in the path planning of mobile robots, such as slow convergence, easy to fall into the "premature" phenomenon, and unsmooth path, the particle swarm optimization algorithm is improved in this paper. When the particles fall into the local optimal value, this improved method can slightly perturb the speed of the global optimal particle to increase the convergence speed. In order to balance the local and global search capabilities, nonlinear inertia weights are proposed. Finally, a fitness function considering the shortest path and smoothness is also proposed. The simulation results show that in a dynamic environment, the improved particle swarm optimization algorithm converges quickly,avoids obstacles, and finds the optimal path that meets the requirements.
作者 巫光福 万路萍 WU Guangfu;WAN Luping(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China)
出处 《机械科学与技术》 CSCD 北大核心 2022年第11期1759-1764,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(11461031) 江西省自然科学基金项目(20181BBE58018) 江西省教育厅科技计划项目(GJJ180442) 江西省教育厅科技重点项目(GJJ170492)。
关键词 粒子群算法 非线性惯性权重 平滑性 路径规划 particle swarm algorithm nonlinear inertia weights smoothness path planning
  • 相关文献

参考文献7

二级参考文献108

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2樊晓平,李双艳.带滚动约束轮移式机器人动态规划的研究[J].控制与决策,2005,20(7):786-788. 被引量:9
  • 3朱庆保.动态复杂环境下的机器人路径规划蚂蚁预测算法[J].计算机学报,2005,28(11):1898-1906. 被引量:50
  • 4Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 5Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 6Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 7Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 8De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 9Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 10Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.

共引文献710

同被引文献154

引证文献12

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部