期刊文献+

因子上保持混合三重η-积的非线性映射

Nonlinear maps preserving mixed triple η-products between factors
原文传递
导出
摘要 令η∈C{0,-1},设φ是两个因子上的不必为线性的双射并且满足φ(I)=I,如果?保持混合三重η-积,那么当η不是实数时?是线性*-同构;当η是实数时φ是线性*-同构或共轭线性*-同构。 Let η∈C{0,-1}and let φ be a not necessarily linear bijection between two factors, satisfying φ(I)=I and preserving mixed triple η-product. It is showed that ? is a linear *-isomorphism if η is not real and φ is either a linear *-isomorphism or a conjugate linear *-isomorphism if η is real.
作者 张芳娟 ZHANG Fang-juan(School of Science,Xi'an University of Posts and Telecommunications,Xi'an 710121,Shaanxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2022年第10期92-96,共5页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11601420) 陕西省自然科学基础研究计划资助项目(2018JM1053)。
关键词 混合三重η-积保持映射 同构 因子 map preserving mixed tripleη-product isomorphism factor
  • 相关文献

参考文献2

二级参考文献6

  • 1Lei Liu,Guo-Xing Ji.Maps preserving product X*Y?+?YX* on factor von Neumann algebras[J].Linear and Multilinear Algebra.2011(9)
  • 2Jianlian Cui,Chi-Kwong Li.Maps preserving product XY - YX ? on factor von Neumann algebras[J].Linear Algebra and Its Applications.2009(5)
  • 3Jian-Hua Zhang,Fang-Juan Zhang.Nonlinear maps preserving Lie products on factor von Neumann algebras[J].Linear Algebra and Its Applications.2008(1)
  • 4Fangyan Lu.Jordan triple maps[J].Linear Algebra and Its Applications.2003
  • 5Fangyan Lu.Multiplicative mappings of operator algebras[J].Linear Algebra and Its Applications.2002(1)
  • 6Run Ling AN Jin Chuan HOU.A Characterization of *-Automorphism on B(H)[J].Acta Mathematica Sinica,English Series,2010,26(2):287-294. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部