摘要
设X为非空集合,E是X上的等价关系,T(X)是X上的全变换半群.记T_(E*)(X)={α∈T(X)|(∀x,y∈X)(x,y)∈E⇔(xα,yα)∈E},则T_(E*)(X)是T(X)的子半群.许多学者对半群T_(E*)(X)作了研究,而沿着这些方向继续研究还可以刻画出T_(E*)(X)中的关系L˜,给出L*=L˜,R=R*的充要条件,证明T_(E*)(X)中的正则元集Re g(T_(E*)(X))形成子半群,同时可以得到Re g(T_(E*)(X))构成完全正则半群和纯正半群的充要条件.
Let X be a non-empty set,E an equivalence relation on X and T(X)the full transformation semigroup on X.Let T_(E*)(X)={α∈T(X)|(∀x,y∈X)(x,y)∈E⇔(xα,yα)∈E},then T_(E*)(X)is a subsemigroup of T(X),which has been studied by many scholars.Continuous study along these directions can describe the L˜-relation of T_(E*)(X),give the necessary and sufficient conditions for L*=L˜and R*=R,and prove that the set of regular elements Reg(T_(E*)(X))of T_(E*)(X)forms a regular subsemigroup.The necessary and sufficient conditions can also be obtained for that Reg(T_(E*)(X))is a completely regular semigroup or an orthodox semigroup.
作者
陈辉
刘鑫
王守峰
CHEN Hui;LIU Xin;WANG Shoufeng(School of Mathematics,Yunnan Normal University,Kunming 650500,China)
出处
《玉溪师范学院学报》
2022年第3期11-15,共5页
Journal of Yuxi Normal University
基金
国家自然科学基金资助项目(项目编号:11661082).
关键词
等价关系
格林*-关系
格林~-关系
纯正半群
完全正则半群
equivalence relation
Green’s*-relation
Green~-relation
orthodox semigroup
completely regular semigroup