期刊文献+

Particle-bound polycyclic aromatic hydrocarbons in typical urban of Yunnan-Guizhou Plateau:Characterization,sources and risk assessment 被引量:2

原文传递
导出
摘要 Monthly particle-phase ambient samples collected at six sampling locations in Yuxi,a high-altitude city on the edge of Southeast Asia,were measured for particle-associated PAHs.As trace substances,polycyclic aromatic hydrocarbons(PAHs)are susceptible to the influences of meteorological conditions,emissions,and gas-particulate partitioning and it is challenging job to precise quantify the source and define the transmission path.The daily concentrations of total PM_(2.5)-bound PAHs ranged from 0.65 to 80.76 ng/m^(3),with an annual mean of 11.94 ng/m^(3).Here,we found that the concentration of PM_(2.5)-bound PAHs in winter was significantly higher than that in summer,which was mainly due to source and meteorology influence.The increase of fossil combustion and biomass burning in cold season became the main contributors of PAHs,while precipitation and low temperature exacerbated this difference.According to the concentration variation trend of PM_(2.5)-bound PAHs and their relationship with meteorological conditions,a new grouping of PAHs is applied,which suggested that PAHs have different environmental fates and migration paths.A combination of source analysis and trajectory model supported local sources from combustion of fossil fuel and vehicle exhaust contributed to the major portion on PAHs in particle,but on the Indochina Peninsula the large number of pollutants emitted by biomass burning during the fire season would affect the composition of PAHs through long-range transporting.Risk assessment in spatial and temporal variability suggested that citizens living in industrial areas were higher health risk caused by exposure the PM_(2.5)-bound PAHs than that in other regions,and the risk in winter was three times than in summer.
出处 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第9期25-38,共14页 环境科学与工程前沿(英文)
基金 supported by the National Key R&D Projects of China(No.2019YFC0214405) the National Natural Science Foundation of China(Nos.21966016,21667014).
  • 相关文献

参考文献6

二级参考文献49

共引文献141

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部