期刊文献+

Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage 被引量:1

原文传递
导出
摘要 Carbon-based electrodes of potassium-ion batteries are of great research interest ascribed to their low cost and environmentally friendly distinctions.However,traditional carbon materials usually exhibit weak mechanical properties and incomplete crosslinking,resulting in poor stability and electrochemical performance.Herein,we report a new strategy for modifying reduced graphene oxide into a uniform few-layer structure through a sol–gel method combined with acid etching treatment.The obtained chemical cross-linking and mechanically reinforced carbon network constructed by graphene(CNCG)demonstrates excellent electrochemical and mechanical properties.Adopted as a free-standing anode(~7 mg·cm^(−2))for potassium ion battery,the asachieved CNCG delivers a high reversible specific capacity of 317.7 mAh·g^(−1) at a current density of 50 mA·g^(−1) and admirable cycle stability(208.4 mAh·g^(−1) at 50 mA·g^(−1) after 500 cycles).The highly reversible structural stability and fully cross-linked properties during potassiation are revealed by ex-situ characterization.This work provides new ideas for the synthesis of new carbon materials and the development of high-performance electrodes.
出处 《Nano Research》 SCIE EI CSCD 2022年第10期9019-9025,共7页 纳米研究(英文版)
基金 supported by the National Natural Science Foundation of China(No.51904216).
  • 相关文献

参考文献3

二级参考文献21

共引文献82

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部