期刊文献+

国产太阳能光热发电有机热载体再生工艺研究

Domestic Solar Thermal Power Generation Organic Heat Carrier Regeneration Process Research
下载PDF
导出
摘要 对光热发电用有机热载体再生处理工艺进行系统建模、计算分析、优化,讨论再生处理效果的影响因素和控制要求,使用闪蒸分离和塔式分离进行高沸物和低沸物分离参比考察,确定再生处理的可行工艺路线,结果表明:闪蒸分离方式分离高沸物和低沸物在技术上是可行的,分离高沸物时,当分离罐(HB-S)温度控制在313℃时可满足要求,但低沸物分离效率偏低以及损耗偏大;采用分离塔分离低沸物时选择进料温度260℃,操作压力1bar,分离塔理论板数10块,回流比3的情况下低沸物回收率高,分离效果明显好于简单的闪蒸分离。 The organic heat carrier regeneration treatment process for solar thermal power generation is systematically modeled,calculated,analyzed and optimized.The influencing factors and control requirements of the regeneration treatment effect are discussed.In order to determine the feasible process route of regeneration treatment,flash separation and tower separation were used to conduct a reference survey of high and low boiling matter separation.The results show that the separation of high and low boiling substances by flash separation is technically feasible.When separating high boiling matter,the temperature of the separation tank can be controlled at 313 ℃,but the separation efficiency of low boiling matter is low and the loss is large.When the separation column is used to separate the low boiling material,the low boiling material recovery rate is high and the separation effect is obviously better than that of simple flash separation under the conditions of feeding temperature 260 ℃,operating pressure 1 bar,10 theoretical plates of the separation tower,and return ratio of 3.
作者 迟宗华 Chi Zonghua(Jiangsu Lianyungang Chemical Industry Park Management Committee,Jiangsu,222500)
出处 《当代化工研究》 2022年第21期150-152,共3页 Modern Chemical Research
关键词 光热发电 有机热载体再生 高低沸物分离 solar thermal power generation organic heat carrier regeneration separation of high and low boiling substances
  • 相关文献

参考文献5

二级参考文献35

  • 1冒东奎.太阳能热力发电技术进展[J].甘肃科学学报,1996,8(3):54-60. 被引量:2
  • 2Al-sakaf 0 H. Application possibilities of solar thermal pow- er plants in Arab countries[J]. Renewable Energy, 1998,14 (1 -4):1 -9.
  • 3Cohen G, Kearney D. Improved parabolic trough solar electric system based on the SEGS experience [ C]//Proceeding of ASES Annual Conference. San Jose : ASES, 1994 : 147 - 150.
  • 4Price H, Lupfert E, Kearney D, et al. Advances in parabolic trough solar power technology [ J ]. Journal of Solar Energy Engineering,2002,124 (2) : 109 - 125.
  • 5Zarza E. Overview on direct steam generation(DSG) and ex- perience at the plataforma solar de almeria(PSA) [ R]. Alm- eria:CIEMAT-Plataforma Solar de Almeria,2007.
  • 6Dudley V, Kolb G, Sloan M, et al. SEGS LS2 solar collec- tor-test results [ R ]. Albuquerque : Sandia National Labora- tories, 1994.
  • 7Giostri A, Binotti M, Silva P, et al. Comparison of two linear collectors in solar thermal plants: parabolic trough vs. fres- nel [ C ]//Proceedings of the ASME 2011 5 th International Conference on Energy Sustainability. Washington: ASES, 2011.
  • 8Dagan E, Muller M, Lippke F. Direct steam generation in the parabolic trough collector [ R ]. Madrid : Plataform Solar de Almeria, 1992.
  • 9F L. Direct steam generation in parabolic trough solar power plants: numerical investigation of the transients and the control of a once-through system [ J ]. Journal of Solar Ener- gy Engineering, 1996,118 ( 1 ) :9 - 14.
  • 10Valenzuela L,Zarza E,Berenguel M,et al. Control scheme for direct steam generation in parabolic troughs under recireula- tion operation mode [ J ]. Solar Energy ,2006,80( 1 ) :1 - 17.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部