期刊文献+

基于YOLOv5的害虫识别研究

Pest Identification Based on YOLOv5
下载PDF
导出
摘要 针对害虫图像数据中小目标误检、漏检、类别不平衡及特征提取能力不足等问题,提出了一种改进的基于YOLOv5的害虫检测模型。首先,该算法通过伪标签技术缓解标签数量不足带来的问题;其次,通过增加一个4倍的下采样层,调整损失函数增强对少数类别的感知能力;再次,通过修改目标框回归公式解决训练过程中梯度消失的问题,提升小目标的检测精度;最后,利用虫情测报灯采集的图像数据进行实例验证。实验结果表明,该害虫检测模型具有较好的预测效果。 To solve the problems of false detection,missed detection,category imbalance and insufficient feature extraction ability of small targets in pest image data,an improved pest detection model based on YOLOv5 is proposed.Firstly,the algorithm uses pseudo-label technique to deal with insufficient labels.Secondly,a 4-fold down-sampling layer and focal loss function are introduced to catch minority categories better.Thirdly,the target box regression formula is modified to solve the problem of gradient disappearance in the training process and improves the accuracy of small targets detection.Finally,the image data collected by the pest detection lamp is used for experiment.The experimental results show that the pest detection model has a good pr ediction effect.
作者 黄丽珊 HUANG Lishan(School of Mathematical Sciences,South China Normal University,Guangzhou Guangdong 510631,China)
出处 《信息与电脑》 2022年第15期194-197,共4页 Information & Computer
关键词 害虫图像 小目标检测 伪标签 损失函数 YOLOv5 pest image small target detection pseudo-label loss function YOLOv5
  • 相关文献

参考文献4

二级参考文献44

  • 1张红涛,毛罕平,邱道尹.储粮害虫图像识别中的特征提取[J].农业工程学报,2009,25(2):126-130. 被引量:61
  • 2李智,李战胜,YigongLOU.基于蚁群算法的内燃机配气机构凸轮型线的动力学仿真[J].农业工程学报,2005,21(6):64-67. 被引量:6
  • 3邱道尹,张红涛,刘新宇,刘彦楠.基于机器视觉的大田害虫检测系统[J].农业机械学报,2007,38(1):120-122. 被引量:33
  • 4Jiang Joe-Air, Tseng Chwan-Lu, Lu Fu-Ming, et al. A GSM-based remote wireless automatic monitoring system for field information: A case study for ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel)[J]. Computers and Electronics in Agriculture, 2008, 62(2): 243-259.
  • 5Tom Arbuckle, Stefan Schroeder, Steinhage Volker, et al. Biodiversity informatics in action: identification and monitoring of bee species using ABIS[C]//In 15th International Symposium for Environmental Protection, Zurich, 2001:425-430.
  • 6Russell K N, Do M T, Plamick N I. Introducing SPIDA-web: An automated identification system for biological species[C]//Taxonomic Database Working Group Annual Meeting, 2005.
  • 7Weeks P J D, O'Neill M A, Gaston K J, et al. Automating insect identification: exploring the limitations of a prototype system[J]. J. Appl, Entomol. 1999, 123(1): 1-8.
  • 8Watson A, O'Neill M, Kitching I. Automated identification of live moths (Macrolepidoptera) using Digital Automated Identification System (DAISY)[J]. Syst. Biodivers, 2003, 1(3): 287-300.
  • 9Gaston K J, O'Neill M A. Automated Species Identification: why not?[J]. Phil. Trans. R. Soc. Lond B, 2004, 359(1444): 655-667.
  • 10Vanhara J, Murarikova N, Malenovsky I, et al. Artificial Neural Networks for fly identification: A case study from the genera Tachina and Ectophasia (Diptera, Tachinidae)[J]. Biol. Bratisl. 2007, 62(4): 462-469.

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部