期刊文献+

基于支持向量机的微博情感分析方法研究 被引量:1

Research on Weibo Sentiment Analysis Method Based on Support Vector Machine
下载PDF
导出
摘要 微博是当前国内最流行的社交平台之一,微博文本的情感分析有助于进一步分析实现其媒体价值,然而,微博数据庞大且冗余性高,使得文本特征具有较高的稀疏性和局限性,在小样本数据分析上情感判断结果并不理想。因此,提出一种基于支持向量机分类模型的微博数据情感分析方法,首先通过weibo Spider爬取微博数据,进行人工标注构建微博文本数据集,然后联合优化TF-IDF算法和传统词袋,提出一种基于关键词的词袋模型,获取文本特征矩阵以解决微博文本高稀疏、高冗余的问题,最后构建高斯核的支持向量机分类器实现对微博数据的情感分析。实验结果显示,对比朴素贝叶斯、决策树等方法,提出的方法可获得较高的准确率,且在小样本数据上有明显优势。 Weibo is currently one of the most popular social platforms in China.The sentiment analysis of Weibo text is helpful for its media value.Therefore,a weibo data sentiment analysis method based on support vector machine is proposed.First,the weibo data is crawled through Weibo Spider,and the weibo text data set is constructed by manual annotation.Then,combined with TF-IDF algorithm and traditional bag of words model,a new bag of words model based on keywords is proposed to obtain the text feature matrix to solve the problem of high sparsity and high redundancy of weibo text,and finally the Gaussian kernel support vector machine method is used to perform sentiment analysis on the crawled weibo data.Compared with the methods such as naive Bayes and decision trees,the experimental results show that the method in this paper obtain a higher accuracy rate,and has obvious advantages on small sample data.
作者 李首政 王琪 王力 Li Shouzheng;Wang Qi;Wang Li(School of Information Engineering,Nanyang Institute of Technology,Nanyang 473000;School of Civil Engineering,Nanyang Institute of Technology,Nanyang 473000)
出处 《现代计算机》 2022年第19期63-66,80,共5页 Modern Computer
关键词 微博文本 情感分析 支持向量机 机器学习 Weibo text sentiment analysis support vector machine machine learning
  • 相关文献

参考文献4

二级参考文献50

  • 1李素建,王厚峰,俞士汶,辛乘胜.关键词自动标引的最大熵模型应用研究[J].计算机学报,2004,27(9):1192-1197. 被引量:93
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3PANG B,LEE L.Opinion mining and sentiment analysis[M].Boston:Now Publishers Inc,2008:8-10.
  • 4HATZIVASSILOGLOU V,MCKEOWN K R.Predicting the semantic orientation of adjectives[C]// Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and 8th Conference of the European Chapter of the Association for Computational Linguistics.Madrid:ACL,1997:174-181.
  • 5TURNEY P D.Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.Philadelphia:ACL,2002:417-424.
  • 6KAMPS J,MARX M,MOKKEN R J,et al.Using WordNet to measure semantic orientation of adjectives[C]//Proceedings of the 4th International Conference on Language Reseurces and Evalvation.Lisbon:LREC,2004:1115-1118.
  • 7GODBOLE N,SRINIVASAIAH M,SKIENA S.Large-seale sentiment analysis for news and blogs[C]// Proceedings of the International Conference on Weblogs and Seeial Media.Colorado:[s.n.],2007:219-222.
  • 8YI J,NASUKAWA T,BUNESCU R C,et al.Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]// Proceedings of the 3rd IEEE International Conference on Data Mining.Florida:IEEE,2003:427-434.
  • 9PANG B,LEE L,VAITHYANATHAN S.Thumbs up? Sentiment classification using machine learning techniques[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing.Philadelphia:[s.n.],2002:79-86.
  • 10MULLEN T,COLLIER N.Sentiment analysis using support vector machines with diverse information sources[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.Barcelona:NLP,2004:412-418.

共引文献467

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部