期刊文献+

基于甲虫后翅的仿生扑翼振动模态特性分析

Vibration Modal Characteristics Analysis of Bionic Flapping Wing Based on Hind Wing of Beetle
下载PDF
导出
摘要 扑翼微型飞行器(FWMAV)的动力主要来源于机翼在低雷诺数下的高频扑动,在空气动力、惯性力以及机翼弹性力的综合作用下,机翼结构在发生形变的同时也会发生振动并影响微飞行器的动稳定性。针对扑翼振动特性的问题,本文获取了甲虫后翅的几何形貌参数和翅脉结构,发现后翅的前缘脉(C)和次前缘脉(Sc)中分布有体液微流;并在获取后翅材料力学数据的基础上,建立了三种不同翅脉结构(实心、空心、“空心+体液”)的后翅力学耦合模型;利用ANSYS对该力学耦合模型进行了振动模态特性分析,结果表明,在后翅扑动频率范围内,“空心+体液”的模型既能获得轴向和展向的变形能力,又能保持后翅基本形态,具有更优的动稳定性。 The power of flapping-wing micro air vehicle(FWMAV) mainly comes from the high-frequency flapping of the wing under low Reynolds number. Under the combined action of aerodynamic force, inertia force and elastic force of wing, the deformation of wing structure will produce vibration and affect the dynamic stability of the micro air vehicle. In order to solve the problem of flapping wing vibration characteristics, we obtaine the geometric morphology parameters and wing vein structure of the hind wing of beetle, and find that there are fluid microflows in the leading edge veins C and the secondary leading edge veins Sc of the hind wing. Based on the mechanical data of hind wing materials, the mechanical coupling models of three different wing veins(solid, hollow, hollow + fluid) are established.The modal vibration characteristics are analyzed by ANSYS, and results show that the hollow + fluid model can not only obtain the axial and extensional deformation ability, but also keep the basic shape of the hind wing, and has better dynamic stability in the range of flapping frequency.
作者 闫永为 孙霁宇 Yan Yongwei;Sun Jiyu(Key Laboratory of Bionic Engineering of Ministry of Education,Jilin University,Changchun 130022,China)
出处 《航空科学技术》 2022年第10期52-58,共7页 Aeronautical Science & Technology
基金 航空科学基金(2020Z0740R4001)。
关键词 扑翼 纳米力学 体液微流 有限元模型 振动模态分析 flapping wing nanomechanics micro fluid finite element model vibration modal analysis
  • 相关文献

参考文献2

二级参考文献20

  • 1淳于江民,张珩.微型无人直升机技术研究现状与展望[J].机器人技术与应用,2004(6):6-11. 被引量:11
  • 2蔡汝鸿.微型直升机的研制与发展[J].直升机技术,2002(4):42-45. 被引量:2
  • 3陈国栋,贾培发,刘艳.微型飞行器的研究与发展[J].机器人技术与应用,2006(2):34-44. 被引量:19
  • 4Erdos J L, Ahner E, McNally W. Numerical solution of periodic transonic flow through a fan stage[R].AIAA Paper No.76 369,1976.
  • 5Rai M M. Unsteady three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction[R]. AIAA Paper 87-2058,1987.
  • 6Arnone A, Liou M S, Povinelli LA. Multigrid calculation of three dimensional viscous cascade flows[R].AIAA Paper 91 3238,1991.
  • 7Arnone A, Marconcini M, Greco A S Del, Spano E. Numerical investigation of three dimensional clocking effects in a low pressure turbine[J].Journal of Turbomachinery, 2004,126(7): 375 384.
  • 8Chaluvadi V S P, Kalfas A I, Banieghbal M R, et al. Blade-row interaction in a h igh-pressure turbine[J]. Journal of Propulsion and Power,2001,17(4):892-901.
  • 9Wang Z M. Solution of transonic S1 surface flow by stream function equation[J]. Journal of Engineering for Gas Turbine and Power,1985,107(2):317 322.
  • 10J ameson A. Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings[R]. AIAA Paper 91 1956,1991.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部