期刊文献+

体检人群肝脂肪病变者中医脉象信号的递归定量识别与分析 被引量:1

Recurrence Quantification Identification and Analysis of Traditional Chinese Medicine Pulse Signals in the Health Check-up Population with Hepatic Steatosis
下载PDF
导出
摘要 目的运用研究非线性动力学的递归定量分析(recurrence quantification analysis,RQA)方法对体检人群肝脂肪病变者的脉象信号进行分析,探讨脉象信号非线性动力学特征对肝脂肪病变的识别价值。方法运用ZY-Ⅰ型脉诊仪采集体检人群的脉象信号,根据腹部超声报告将体检人群分为肝脂肪病变组和非肝脂肪病变组;提取体检人群脉象信号RQA特征,并运用非参数检验分析两组人群脉象信号的RQA特征差异;基于脉象信号RQA特征,运用随机森林机器学习方法建立体检人群肝脂肪病的识别模型,并通过评价指标准确率、精确率、召回率、F1值、受试者工作特征曲线(receiver operating characteristic curve,ROC)及曲线下面积(area under the curve,AUC)评估模型识别性能。结果肝脂肪病变组脉象信号RQA特征递归率、确定性、对角线长度的均值、递归熵、层状度、竖直/水平线段长度均值和最长竖直/水平线段长度均高于非肝脂肪病变组(P<0.05);基于脉象信号RQA特征建立的体检人群肝脂肪病变识别模型,其准确率为80.34%,精确率为82.17%,召回率为86.00%,F1值为84.04%,AUC为86.77%。结论与非肝脂肪病变组相比,肝脂肪病变组的脉象信号系统表现出更高的规律性、确定性、稳定性,基于RQA特征建立的体检人群肝脂肪病变识别模型能较好地区分肝脂肪病变组与非病变组的脉象信号,可为肝脂肪病变的早期预警及辅助诊断提供一定的临床参考。 Objective To analyze the pulse signals of the health check-up population with hepatic steatosisusing the recurrence quantification analysis(RQA)method for studying nonlinear dynamics,and to investigate the value of the nonlinear dynamical characteristics of pulse signals in identifying hepatic steatosis.Methods The ZY-Ⅰpulse diagnostic instrument was used to collect the pulse signals of the health check-up population,and the population was divided into hepatic steatosis group and non-hepatic steatosis group according to the abdominal ultrasound findings.The RQA characteristics of the pulse signals were extracted,and a non-parametric test was used to investigate the difference in RQA characteristics between the two groups.Based on the RQA characteristics of the pulse signals,the random forest(RF)algorithm was used to establish an identification model for hepatic steatosis in the health check-up population,and the performance of this identification model was evaluated based on the criteria including accuracy,precision,recallrate,F1-score,receiver operating characteristic(ROC)curve,and area under the ROC curve(AUC).Results Compared with the non-hepatic steatosis group,the hepatic steatosis group had significantly higher RR,DET,L,ENTR,LAM,TT,and V_(max) among the RQA characteristics of pulse signals(P<0.05).The identification model for hepatic steatosis in the health check-up population based on the RQA characteristics of pulse signals had an accuracy of 80.34%,a precision of 82.17%,a recall rate of 86.00%,an F1-score of 84.04%,and an AUC of 86.77%.Conclusion Compared with the non-hepatic steatosis group,the hepatic steatosis group shows higher levels of regularity,certainty,and stability in the pulse signal system.The identification model for hepatic steatosis in the health check-up population based on RQA characteristics can better distinguish the pulse signals of the hepatic steatosis group from those of the non-hepatic steatosis group,which can provide a reference for the early warning and auxiliary diagnosis of hepatic steatosis.
作者 武文杰 郭睿 张春柯 颜建军 王忆勤 燕海霞 马孝天 WU Wenjie;GUO Rui;ZHANG Chunke;YAN Jianjun;WANG Yiqin;YAN Haixia;MA Xiaotian(School of Basic Medical Science,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China;School of Mechanical and Power Engineering,East China University of Science and Technology,Shanghai 201203,China)
出处 《安徽中医药大学学报》 CAS 2022年第6期8-13,共6页 Journal of Anhui University of Chinese Medicine
基金 国家自然科学基金项目(82074332) 上海市科学技术委员会科研计划项目(19441901100)。
关键词 肝脂肪病变 脉象信号 递归定量分析 随机森林 Hepatic steatosis Pulse signal Recurrence quantification analysis Random forest
  • 相关文献

参考文献6

二级参考文献36

  • 1范建高,朱军,李新建,李锐,戴菲,宋晓敏,陈兰,李锋,陈世耀.上海市成人脂肪肝患病率及其危险因素流行病学调查[J].中华肝脏病杂志,2005,13(2):83-88. 被引量:583
  • 2谢霞,梁圣彬,李世存,邱力军.脂肪肝超声诊断与血脂、血糖和肥胖的相关性分析[J].第四军医大学学报,2007,28(4):331-333. 被引量:34
  • 3李世雄,小波变换及其应用,1997年
  • 4Cao Liangyue,Phys D,1995年,85卷,225页
  • 5Zhang Qinghua,IEEE Trans Neural Networks,1992年,3卷,889页
  • 6王吉耀.脂肪肝临床流行病普查.中华肝脏病杂志,2000,8:117-117.
  • 7CASDAGLI M C. Recurrence plots revisited[J]. Physica D,1997,108:12-44.
  • 8WEBBER C L, ZBILUT J P. Dynamical assessment of physiological systems and state using recurrence plot strategies [J]. Appl Physiol ,1994,76..965-973.
  • 9贾雪松 李亚安 王军 等.基于混沌理论的水声信号特征提取[J].哈尔滨工程大学学报,2004,25:67-69.
  • 10PHILIPPE F, KORN H. A new method to estimate the Kolmogorov entropy from recurrence plots., its application to neuronal signals[J]. Physiea D, 1998,122:265-279.

共引文献42

同被引文献20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部