期刊文献+

基于PCA-SSA-ELM的混凝土坝变形预测模型 被引量:4

Prediction Model of Concrete Dam Deformation Based on PCA-SSA-ELM
下载PDF
导出
摘要 混凝土坝变形与环境量之间有着复杂的函数关系,传统统计模型泛化能力较弱,难以处理高维非线性问题。为此,提出了一种基于主成分分析法和麻雀搜索算法优化极限学习机的混凝土坝变形预测模型,该模型通过主成分分析法(PCA)提取环境量中的关键因子作为模型输入变量,采用寻优能力强的麻雀搜索算法(SSA)选取极限学习机(ELM)中的初始输入权重和偏置的最优解。将该PCA-SSA-ELM模型应用到某高拱坝拱冠梁坝段测点径向位移的预测中,并与ELM、BP神经网络模型的计算结果进行对比分析,验证了新模型的有效性。 Complex functional relationship exists between the deformation of concrete dam and the environmental variables,while traditional statistical models are too weak in generalization capability to deal with high-dimensional nonlinear problems.A concrete dam deformation prediction model based on principal component analysis,sparrow search algorithm and extreme learning machine(PCA-SSA-ELM)is proposed.The model extracts the key factors in the environmental variables as the model input variables by PCA,and selects the optimal solution of initial input weights and biases in ELM by using SSA with strong optimization ability.The model is applied to predict the radial displacement of the measured points in the arch crown beam section of a high arch dam,and the predicted results are compared with that of the ELM and the BP neural network.The effectiveness of the proposed model is verified.
作者 李昕 赵二峰 王嘉毅 LI Xin;ZHAO Erfeng;WANG Jiayi(State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210024,Jiangsu,China;College of Water Conservancy and Hydropower,Hohai University,Nanjing 210024,Jiangsu,China;National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,Hohai University,Nanjing 210024,Jiangsu,China)
出处 《水力发电》 CAS 2022年第12期62-66,91,共6页 Water Power
基金 国家自然科学基金资助项目(51739003,52079046,U2243223) 中央高校基本科研业务费项目(B210202017)。
关键词 混凝土坝变形 预测模型 主成分分析 极限学习机 麻雀搜索算法 concrete dam deformation prediction model principal component analysis(PCA) extreme learning machine(ELM) sparrow search algorithm(SSA)
  • 相关文献

参考文献9

二级参考文献141

共引文献125

同被引文献62

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部