期刊文献+

融合多元用户特征和内容特征的微博谣言实时检测模型 被引量:6

Weibo Rumors Real-time Detection Model Based on Fusion of Multi User Features and Content Features
下载PDF
导出
摘要 针对目前基于单文本语义特征深度学习的微博谣言实时检测模型泛化能力不足的问题,提出一种融合多元用户特征和内容特征的实时检测模型.首先,在传统用户基本特征和内容统计特征的基础上,利用用户的历史行为数据,挖掘用户理性值和用户专业度两个深层次特征;然后,基于词向量和带有注意力机制的双向GRU神经网络构建文本语义特征学习模型;最后,采用分层特征级联和全连接的方式进行特征融合,把融合特征输入分类模型进行训练.实验结果表明,该模型的检测准确率达到了91.74%,相比其他只关注文本语义特征的深度学习实时检测模型具有更好的识别效果,相比于其他改进型的实时检测模型F1-Measure值也提高了2.19%. In order to solve the problem of low generalization ability of Weibo rumor real-time detection model based on deep learning of text semantic features,a real-time detection model fusion of multi user features and content features is proposed.First of all,in addition to the traditional user basic features and content statistical features,two implicit features of user rationality and user professionalism are mined based on user′s historical behavior data;Then,a text semantic feature learning model is constructed based on word vector and bidirectional GRU neural network with attention mechanism;Finally,the hierarchical cascade and full connection are used for feature fusion,and the fused features are input into the classification model for training.The experimental results show that the accuracy of the model is 91.74%,which is better than other deep learning real-time detection models based on text semantic features.Compared with other improved real-time detection models,F1-Measure value also increased by 2.19%.
作者 黄学坚 王根生 罗远胜 闵潞 吴小芳 李志鹏 HUANG Xue-jian;WANG Gen-sheng;LUO Yuan-sheng;MIN Lu;WU Xiao-fang;LI Zhi-peng(School of Humanities,Jiangxi University of Finance and Economic,Nanchang 330013,China;Computer Practice Teaching Center,Jiangxi University of Finance and Economics,Nanchang 330013,China;School of International Trade and Economics,Jiangxi University of Finance and Economic,Nanchang 330013,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2022年第12期2518-2527,共10页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(72061015,61562031)资助 江西省教育厅科技项目(GJJ200539)资助。
关键词 微博谣言 实时检测 特征融合 深层特征 深度学习 Weibo rumors real-time detection feature fusion implied features deep learning
  • 相关文献

参考文献15

二级参考文献80

  • 1任一奇,王雅蕾,王国华,冯伟.微博谣言的演化机理研究[J].情报杂志,2012,31(5):50-54. 被引量:40
  • 2邓国峰,唐贵伍.网络谣言传播及其社会影响研究[J].求索,2005(10):88-90. 被引量:59
  • 3胡钰.大众传播效果[M]{H}北京:新华出版社,2000120-121.
  • 4Castillo C,Mendoza M,Poblete B. Information credibility on Twitter[A].New York:ACL,2011.675-684.
  • 5Qazvinian V,Rosengren E,Radev D R. Rumor has it:Identifying misinformation in microblogs[A].Edinburgh:ACL,2011.1589-1599.
  • 6Mendoza M,Pdblete B,Castillo C. Twitter under crisis:Can we trust what we RT[A].New York:ACL,2010.71-79.
  • 7Takahashi T,Igata N. Rumor detection on Twitter[A].Kobe:IEEE,2012.452-457.
  • 8Yang Fan,Liu Y,Yu X. Automatic detection of rumor on Sina Weibo[A].Beijing:ACM,2012.1-7.
  • 9Wang A H. Don't follow me:Spam detection in Twitter[A].Athens:SciThePress,2010.142-151.
  • 10Zhang Huaping,Yu Hongkui,Xiong Deyi. HHMM-based Chinese lexical analyzer ICTCLAS[OL].http://www.docin.wm/p-824199.html,2013.

共引文献249

同被引文献52

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部