摘要
Funk度量F是一个射影平坦的Finsler度量,它具有常曲率K=-14和常S 曲率S=12(n+1)F.首先在欧氏空间Rn的一个强凸区域Ω上用Funk度量F和闭1 形式β构造了一类新的Finsler度量 F=F+β,然后分别找到了 F具有常曲率和常S 曲率的充分必要条件.
The wellknown Funk metric F is a projectively flat Finsler metric with constant curvature K=-14 and constant Scurvature S=12(n+1)F. The authors construct a class Finsler metrics =F+β, where F and β denote Funk metric and a close lform on a strongly convex domain Ω in Rn, respectively. Then a necessary and sufficient condition for of constant curvature and constant Scurvature is found respectively.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2002年第6期828-831,共4页
Journal of Southwest China Normal University(Natural Science Edition)