摘要
研究了非齐次仿积算子π_(b),证明了其属于非齐次Calderón-Zygmund算子,说明除拟微分算子还存在其他的非齐次Calderón-Zygmund算子,并利用原子分解证明了算子π_(b)是h^(p)(R^(n))→L^(p)(R^(n))有界的。
A research is conducted on inhomogeneous para-product operatorsπ_(b),and it is proved that they belong to inhomogeneous Calderón-Zygmund operators,which shows that there are other inhomogeneous Calderón-Zygmund operators besides the quasi-differential operator.Moreover,by using atomic decomposition,it is concluded thatπ_(b) is bounded from h^(p)(R^(n)) to L^(p)(R^(n)).
作者
徐蕴
倪梓原
丁卫
XU Yun;NI Zi-yuan;DING Wei(School of Science,Nantong University,Nantong 226007,China)
出处
《南通职业大学学报》
2022年第3期57-61,共5页
Journal of Nantong Vocational University
基金
国家自然科学基金资助项目(11771223)。
关键词
非齐次仿积算子
有界性
原子分解
inhomogeneous para-product operators
boundedness
atomic decomposition