期刊文献+

一种亚微米阵列激光器混合集成倒装焊技术

下载PDF
导出
摘要 应用于光通信行业的硅光技术,因其高集成、规模化、低成本等优势,近年来发展十分迅速。然而,由于硅材料本身不能发光,如何将光导入硅芯片始终是一大难题。目前较为高效且可行的方案是Ⅲ-Ⅴ族器件与硅光芯片的混合集成技术。本文介绍一种将Ⅲ-Ⅴ族激光器与硅芯片混合集成的倒装焊技术,除了解决光芯片之间光的低损耗耦合之外,通过高精度倒装焊实现了Ⅲ-Ⅴ族激光器与硅芯片的亚微米无源邦定。该技术具有工艺简单、精度优良、适合量产的特点,为混合集成技术的商业化打下坚实基础。 Silicon photonics used in the optical communication industry has developed rapidly in recent years due to its advantages of high integration, scale and low cost. However, since the silicon material itself can not emit light, how to introduce the light into the silicon chip has always been a big problem. At present, the most efficient and feasible implementation scheme is the hybrid integration technology of Ⅲ-Ⅴ devices and silicon phtonics chips. This paper introduces a flip-chip bonding technology which integrates Ⅲ-Ⅴ laser and silicon photonics chip. In addition to solving the low loss coupling between optical chips, the submicron-level passive alignment bonding of Ⅲ-Ⅴ laser and silicon photonics chip is realized by high precision flip-chip bonding teghnology. It has the characteristics of simple process, excellent precision and suitable for mass quantification, which lays a solid foundation for the commercialization of hybrid integration technology.
出处 《现代传输》 2022年第6期69-73,共5页 Modern Transmission
关键词 硅光 混合集成 倒装焊 耦合 Silicon photonics chip Hybrid Integration Flip-Chip Bonding Coupling
  • 相关文献

参考文献2

二级参考文献11

  • 1TSUCHIZAWA T, YAMADA K, FUKUDA H, et al.Microphotonics devices based on silicon microfabrication technology [J].IEEE Journal of Selected Topics on Quantum Electronics,2005,11(1):232-240.
  • 2SHOJI T, TSUCHIZAWA T, WATANABE T, et al. Low loss mode size converter from 0.3μm square Si wire waveguides to singlemode fibres. Electronics Letters[J].2002,38(25): 1669-1670.
  • 3FUKUDA H, YAMADA K, TSUCHIZAWA T,et al.Silicon photonic circuit with polarization diversity[J].Optics Express,2008,16(7):4872-4880.
  • 4ZHANG Jing, ZHANG Huijuan, Shiyi Chert,et al.A polarization Diver- sity Circuit for Silicon Photonics[C].OFC,2011, JThA019.
  • 5NISHI H, TSUCHIZAWA T, WATANABE T,et al. Compact and polar- ization-independent variable optical attenuator based on a silicon wire waveguide with a carrier injection structure[J]. Jpn J Appl Phys,2010,49(4): 4-5.
  • 6PARK S, ISHIKAWA Y, TSUCHIZAWA T,et al. Effect of Post-Growth Annealing on Morphology of Ge Mesa Selectively on Si[J].2008,E91-C(2) : 181-186.
  • 7PARK S, TSUCHIZAWA T, WATANABE T, et al.Monolithic integra- tion and synchronous operation of germanium photodectectors and silicon variable optical attenuators[J].Opties Express,2010, 18(8):8412-8421.
  • 8YAMADA K, TSUCHIZAWA T, WATANABE T, et al. Optical power stabilization using a germanium photodiode and a variable optical attenua- tor integrated on a silicon wire wavcguidc platform[C].Group IV Photonics (GFP),7th IEEE International Conference ,2010:359-361.
  • 9DAY I E, ROBERTS S W, CARROLL R O, et al. Single-chip variable optical attenuator and multiplexer subsystem integration.OFC,70, TuK4.
  • 10NISHI H, TSUCHIZAWA T, WATANABE T, et al. Monolithic inte- gration of a silica-based arrayed waveguide grating filter and silicon vari- able optical attenuators based on p-i-n cartier-injection structure[C].We.8.E. 3,ECOC ,2010:1-3.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部