期刊文献+

A plastic strain energy method exploration between machined surface integrity evolution and torsion fatigue behaviour of low alloy steel

原文传递
导出
摘要 To explore the evolution mechanism of multistage machining processes and torsional fatigue behaviour based on strain energy for the first time and provide process optimization of axis parts of low alloy steel for service performance,four multistage machining processes were applied to the 45Cr Ni Mo VA steel,including the Rough Turning process(RT),RT+the Finish Turning process(FRT),FRT+the Grinding process(GFRT)and RT+the Finish Turning process on dry cutting condition(FRT0).The result showed that the FRT process’s average low-cycle torsional fatigue life increased by 50%when it evolved from the RT process.The lower surface roughness of R1.3μm caused the total strain energy to increase by 163.8 Pa mm/mm instead of the unchanged strain energy density,and the crack feature evolved from some specific bulges to flat shear plane characteristics.When the GFRT process evolved from the FRT process,its average fatigue life increased by 1.45 times,compared with the RT process.Plastic strain amplitude decreased by 21%,and the strain energy density decreased by 4%due to more considerable compressive residual stress(-249 MPa).Plastic deformation layer depth had a consistent tendency with surface roughness.In this paper,surface integrity evolutions on cyclic characteristics and fatigue behaviour have also been explained.A fatigue life prediction model based on the energy method for machined surface integrity is proposed.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期412-429,共18页 中国航空学报(英文版)
基金 National Natural Science Foundation of China(No.52075042)。
  • 相关文献

参考文献1

二级参考文献6

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部