期刊文献+

水热法合成rGO/Mo_(0.7)Co_(0.3)S_(2)超级电容器电极复合材料 被引量:3

Hydrothermal method of rGO/Mo_(0.7)Co_(0.3)S_(2) nanocomposites for high-performance supercapacitor electrodes
原文传递
导出
摘要 氧化石墨烯(rGO)以广泛的比表面积(SSA)(2630 m^(2)/g)、高电导率和化学稳定性及优异的力学、热和光学性能成为超级电容器中的佼佼者,但是氧化石墨烯本身导电性较差,因此本文通过rGO与Mo_(0.7)Co_(0.3)S_(2)复合改善其性能,采用简单的水热法成功合成了rGO与Mo_(0.7)Co_(0.3)S_(2)不同质量比的纳米复合材料rGO/Mo_(0.7)Co_(0.3)S_(2)。通过XRD、SEM、HRTEM、EDS等手段对其物理结构进行表征。以泡沫镍为基底,聚偏氟氯乙烯为粘结剂,N-甲基吡咯烷酮作为辅助剂制作电极,在KOH为电解液的三电极电化学工作站上测试其电化学性能。实验结果表明,rGO/Mo_(0.7)Co_(0.3)S_(2)纳米复合材料为六方结构,结晶良好,形貌主要为纳米花状微球结构,Mo_(0.7)Co_(0.3)S_(2)纳米颗粒表面被一层纱似的rGO包裹着。rGO/Mo_(0.7)Co_(0.3)S_(2)纳米复合材料表现出明显的赝电容行为,特别是rGO/Mo_(0.7)Co_(0.3)S_(2)电极(rGO的含量为30wt%)表现出最大的比电容和最小的扩散阻抗,在电流密度5 A·g^(-1)下循环3000次后rGO/Mo_(0.7)Co_(0.3)S_(2)电极(rGO的含量为30wt%)的比电容值由1377.00 F·g^(-1)降为1307.87 F·g^(-1)^(-1),库伦效率为95%,这可能是由于Mo_(0.7)Co_(0.3)S_(2)与rGO之间发生的耦合效应。 Graphene oxide(rGO) has become a leader in supercapacitors with a wide specific surface area(SSA)(2 630 m^(2)/g), high electrical conductivity and chemical stability, and excellent mechanical, thermal and optical properties. However, rGO itself has poor electrical conductivity, so in this paper, rGO is combined with Mo_(0.7)Co_(0.3)S_(2)to improve its performance. This paper was successfully synthesized different mass ratios of rGO and Mo_(0.7)Co_(0.3)S_(2)by a simple hydrothermal method. The microstructure was characterized by XRD, SEM, HRTEM, EDS. The electrode is made by using foamed nickel as the substrate, polyvinylidene chlorofluoride as the binder, and N-methyl pyrrolidone as the auxiliary agent. The electrochemical performance was tested on a three-electrode electrochemical workstation with KOH as the electrolyte. The experimental results show that all samples exhibit hexagonal system structure with good crystallization, the morphologies are flower-like microsphere shape with a certain degree of agglomeration. The surface of Mo_(0.7)Co_(0.3)S_(2)nanoparticles is wrapped by a layer of rGO like yarn. rGO/Mo_(0.7)Co_(0.3)S_(2)nanocomposite exhibits pseudo-capacitance behavior and excellent electrochemical performance, especially the Mo_(0.7)Co_(0.3)S_(2)electrode(30wt% rGO content) exhibits the largest specific capacitance and smallest impedance, and the Mo_(0.7)Co_(0.3)S_(2)electrode(30wt% rGO content) electrode reduced from 1 377.00 F·g^(-1)-1 to 1 307.87 F·g^(-1)after 3 000cycles at a current density of 5 A·g^(-1), the coulombic efficiency is 95%, which may be due to the Coupling effect between Mo_(0.7)Co_(0.3)S_(2)and rGO.
作者 马金环 魏智强 梁家浩 卢强 李超 李羚 MA Jinhuan;WEI Zhiqiang;LIANG Jiahao;LU Qiang;LI Chao;LI Ling(School of Science,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《复合材料学报》 EI CAS CSCD 北大核心 2022年第10期4580-4589,共10页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(51261015) 甘肃省自然科学基金(1308RJZA238) 兰州理工大学红柳一流学科发展项目。
关键词 二硫化钼 CO掺杂 氧化石墨烯 高比电容 电化学性能 超级电容器 MoS_(2) Co doping graphene oxide high specific capacitance electrochemical properties supercapacitor
  • 相关文献

参考文献7

二级参考文献46

  • 1Geim A K, Novoselov K S. The rise of grapheme. Nature Mater, 2007, 6:183.
  • 2Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett, 2010, 97:22310.
  • 3Du Y, Zhuang J, Liu H, et al. Tuning the band gap in silicene by oxidation. ACS Nano, 2014, 8:10019.
  • 4Jamgotchian H, Colignon Y, Hamzaoui N, et al. Growth of sil- icene layers on Ag(lll): unexpected effect of the substrate tem- perature. J Phys: Condens Matter, 2012, 24:172001.
  • 5Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and opto-electronics of two-dimensional transition metal dichalcogenides. Nature Nanotech, 2012, 7:699.
  • 6Liao J, Sa B, Zhou J, et al. Design of high-efficiency visible-light photocatalysts for water splitting: MoSz/A1N(GaN) heterostruc- tures. J Phys Chem C, 2014, 118:17594.
  • 7Wang H, Yu L, Lee Y H, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12:4674.
  • 8Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototran- sistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12:3695.
  • 9Sarkar D, Liu W, Xie X, et al. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano, 2014, 8:3992.
  • 10Krasnozhon D, Lembke D, Nyffeler C, et al. MoS2 transistors operating at gigahertz frequencies. Nano Lett, 2014, 14:5905.

共引文献29

同被引文献14

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部